Abstract

Rapid detection of hardware Trojans on a semiconductor chip that may run malicious processes on the chip is a critical and ongoing security need. Several approaches have been investigated in the past for hardware Trojan detection, mostly based on changes in circuit parameters due to Trojan activity. Chip temperature is one such parameter that is closely related to the degree of Trojan activity. This paper carries out backside infrared (IR) imaging of a two-die three-dimensional integrated circuit (3D IC) thermal test chip in order to detect unusual thermal activities on the chip. Four distinct image processing algorithms are evaluated and compared in terms of speed, accuracy, and occurrence of false positives and negatives. The impact of background thermal activity and finite duration of Trojan activity on the accuracy of detection is investigated. Within the parameter space tested in this work, the histogram method is found to be the most effective at Trojan detection in the 3D IC. Modifications in data analysis techniques are proposed that improve Trojan detection performance. This work may help develop thermal imaging as a means for real-time Trojan detection and enhancement of security of modern semiconductor chips, including 3D ICs.

References

1.
Croteau
,
C. B.
, and
Krishnankutty
,
D.
,
2017
, “
Cyber-Physical Security Research at UMBC's Eclipse Lab
,”
ASME Mech. Eng.
,
139
(
3
), pp.
S18
S23
.10.1115/1.2017-Mar-7
2.
Hu
,
N.
,
Ye
,
M.
, and
Wei
,
S.
,
2019
, “
Surviving Information Leakage Hardware Trojan Attacks Using Hardware Isolation
,”
IEEE Trans. Emerg. Top. Comput.
,
7
(
2
), pp.
253
261
.10.1109/TETC.2017.2648739
3.
Nguyen
,
L. N.
,
Cheng
,
C.-L.
,
Prvulovic
,
M.
, and
Zajic
,
A.
,
2019
, “
Creating a Backscattering Side Channel to Enable Detection of Dormant Hardware Trojans
,”
IEEE Trans. Very Large Scale Integr. Syst.
,
27
(
7
), pp.
1561
1574
.10.1109/TVLSI.2019.2906547
4.
Narasimhan
,
S.
,
Du
,
D.
,
Chakraborty
,
R. S.
,
Paul
,
S.
,
Wolff
,
F. G.
,
Papachristou
,
C. A.
,
Roy
,
K.
, and
Bhunia
,
S.
,
2013
, “
Hardware Trojan Detection by Multiple-Parameter Side-Channel Analysis
,”
IEEE Trans. Comput.
,
62
(
11
), pp.
2183
2195
.10.1109/TC.2012.200
5.
Hu
,
K.
,
Nowroz
,
A. N.
,
Reda
,
S.
, and
Koushanfar
,
F.
,
2013
, “
High-Sensitivity Hardware Trojan Detection Using Multimodal Characterization
,” Design, Automation and Test in Europe Conference and Exhibition (
DATE
), Grenoble, France, Mar. 18–22, pp.
1271
1276
.10.7873/DATE.2013.263
6.
Tehranipoor
,
M.
, and
Koushanfar
,
F.
,
2010
, “
A Survey of Hardware Trojan Taxonomy and Detection
,”
IEEE Des. Test Comput.
,
27
(
1
), pp.
10
25
.10.1109/MDT.2010.7
7.
Narasimhan
,
S.
,
Wang
,
X.
,
Du
,
D.
,
Chakraborty
,
R. S.
, and
Bhunia
,
S.
,
2011
, “
TeSR: A Robust Temporal Self-Referencing Approach for Hardware Trojan Detection
,”
IEEE International Symposium on Hardware-Oriented Security and Trust
, San Diego, CA, June 5–6, pp.
71
74
.10.1109/HST.2011.5954999
8.
Wang
,
Q.
,
Chen
,
D.
, and
Geiger
,
R. L.
,
2018
, “
Transparent Side Channel Trigger Mechanism on Analog Circuits With PAAST Hardware Trojans
,” IEEE International Symposium on Circuits and Systems (
ISCAS
), Florence, Italy, May 27–30, pp.
1
4
.10.1109/ISCAS.2018.8351233
9.
Amelian
,
A.
, and
Borujeni
,
S. E.
,
2018
, “
A Side-Channel Analysis for Hardware Trojan Detection Based on Path Delay Measurement
,”
J. Circuits, Syst. Comput.
,
27
(
9
), p.
1850138
.10.1142/S0218126618501384
10.
Cha
,
B.
, and
Gupta
,
S. K.
,
2013
, “
Trojan Detection Via Delay Measurements: A New Approach to Select Paths and Vectors to Maximize Effectiveness and Minimize Cost
,” Design, Automation and Test in Europe Conference and Exhibition (
DATE
), Grenoble, France, Mar. 18–22, pp.
1265
1270
.10.7873/DATE.2013.262
11.
Bao
,
C.
,
Forte
,
D.
, and
Srivastava
,
A.
,
2015
, “
Temperature Tracking: Toward Robust Run-Time Detection of Hardware Trojans
,”
IEEE Trans. Comput. Des. Integr. Circuits Syst.
,
34
(
10
), pp.
1577
1585
.10.1109/TCAD.2015.2424929
12.
Salmani
,
H.
, and
Tehranipoor
,
M.
,
2012
, “
Layout-Aware Switching Activity Localization to Enhance Hardware Trojan Detection
,”
IEEE Trans. Inf. Forensics Secur.
,
7
(
1
), pp.
76
87
.10.1109/TIFS.2011.2164908
13.
Hou
,
B.
,
He
,
C.
,
Wang
,
L.
,
En
,
Y.
, and
Xie
,
S.
,
2014
, “
Hardware Trojan Detection Via Current Measurement: A Method Immune to Process Variation Effects
,” Tenth International Conference on Reliability, Maintainability and Safety (
ICRMS
), Guangzhou, China, Aug. 6–8, pp.
1039
1042
.10.1109/ICRMS.2014.7107361
14.
Xiao
,
K.
,
Zhang
,
X.
, and
Tehranipoor
,
M.
,
2013
, “
A Clock Sweeping Technique for Detecting Hardware Trojans Impacting Circuits Delay
,”
IEEE Des. Test
,
30
(
2
), pp.
26
34
.10.1109/MDAT.2013.2249555
15.
Jin
,
Y.
,
Maliuk
,
D.
, and
Makris
,
Y.
,
2012
, “
Post-Deployment Trust Evaluation in Wireless Cryptographic ICs
,”
Design, Automation and Test in Europe Conference and Exhibition
,
W.
Rosenstiel
, and
L.
Thiele
, eds., Dresden, Germany, Mar. 12–16, pp.
965
970
.10.1109/DATE.2012.6176636
16.
Dubeuf
,
J.
,
Hely
,
D.
, and
Karri
,
R.
,
2013
, “
Run-Time Detection of Hardware Trojans: The Processor Protection Unit
,” 18th IEEE European Test Symposium (
ETS
), Avignon, France, May 27–30, pp.
1
6
.10.1109/ETS.2013.6569378
17.
Zhang
,
X.
, and
Tehranipoor
,
M.
,
2013
, “
RON: An on-Chip Ring Oscillator Network for Hardware Trojan Detection
,”
Design, Automation and Test in Europe
, Grenoble, France, Mar. 14–18, pp.
1
6
.10.1109/DATE.2011.5763260
18.
Narasimhan
,
S.
,
Yueh
,
W.
,
Wang
,
X.
,
Mukhopadhyay
,
S.
, and
Bhunia
,
S.
,
2012
, “
Improving IC Security Against Trojan Attacks Through Integration of Security Monitors
,”
IEEE Des. Test Comput.
,
29
(
5
), pp.
37
46
.10.1109/MDT.2012.2210183
19.
Davoodi
,
A.
,
Li
,
M.
, and
Tehranipoor
,
M.
,
2013
, “
A Sensor-Assisted Self-Authentication Framework for Hardware Trojan Detection
,”
IEEE Des. Test
,
30
(
5
), pp.
74
82
.10.1109/MDAT.2013.2255913
20.
Kim
,
L. W.
, and
Villasenor
,
J. D.
,
2015
, “
Dynamic Function Verification for System on Chip Security Against Hardware-Based Attacks
,”
IEEE Trans. Reliab.
,
64
(
4
), pp.
1229
1242
.10.1109/TR.2015.2447111
21.
Soll
,
O.
,
Korak
,
T.
,
Muehlberghuber
,
M.
, and
Hutter
,
M.
,
2014
, “
EM-Based Detection of Hardware Trojans on FPGAs
,” IEEE International Symposium on Hardware-Oriented Security and Trust (
HOST
), Arlington, VA, May 6–7, pp.
84
87
.10.1109/HST.2014.6855574
22.
Cao
,
Y.
,
Chang
,
C. H.
, and
Chen
,
S.
,
2014
, “
A Cluster-Based Distributed Active Current Sensing Circuit for Hardware Trojan Detection
,”
IEEE Trans. Inf. Forensics Secur.
,
9
(
12
), pp.
2220
2231
.10.1109/TIFS.2014.2360432
23.
Ngo
,
X.-T.
,
Exurville
,
I.
,
Bhasin
,
S.
,
Danger
,
J.-L.
,
Guilley
,
S.
,
Najm
,
Z.
,
Rigaud
,
J.-B.
, and
Robisson
,
B.
,
2015
, “
Hardware Trojan Detection by Delay and Electromagnetic Measurements
,” Design, Automation and Test in Europe Conference and Exhibition (
DATE
), Grenoble, France, Mar. 9–13, pp.
782
787
.10.7873/DATE.2015.1103
24.
He
,
C.
,
Hou
,
B.
,
Wang
,
L.
,
En
,
Y.
, and
Xie
,
S.
,
2014
, “
A Novel Hardware Trojan Detection Method Based on Side-Channel Analysis and PCA Algorithm
,” Tenth International Conference on Reliability, Maintainability and Safety (
ICRMS
), Guangzhou, China, Aug. 6–8, pp.
1043
1046
.10.1109/ICRMS.2014.7107362
25.
Oh
,
S. K.
,
Lundh
,
J. S.
,
Shervin
,
S.
,
Chatterjee
,
B.
,
Lee
,
D. K.
,
Choi
,
S.
,
Kwak
,
J. S.
, and
Ryou
,
J.-H.
,
2019
, “
Thermal Management and Characterization of High-Power Wide-Bandgap Semiconductor Electronic and Photonic Devices in Automotive Applications
,”
ASME J. Electron. Packag.
,
141
(
2
), p.
020801
.10.1115/1.4041813
26.
Pandey
,
P.
,
Oxley
,
C.
,
Hopper
,
R.
,
Ali
,
Z.
, and
Duffy
,
A.
,
2019
, “
Infra-Red Thermal Measurement on a Low-Power Infra-Red Emitter in CMOS Technology
,”
IET Sci. Meas. Technol.
,
13
(
1
), pp.
25
28
.10.1049/iet-smt.2018.5427
27.
Andonova
,
A.
,
Angelov
,
G.
, and
Chernev
,
P.
,
2014
, “
Diagnostics of Packaged ICs by Infrared Thermography
,”
Proceedings of the 37th International Spring Seminar on Electronics Technology
, Dresden, Germany, May 7–11, pp.
261
266
.10.1109/ISSE.2014.6887605
28.
Hamann
,
H. F.
,
Weger
,
A.
,
Lacey
,
J. A.
,
Hu
,
Z.
,
Bose
,
P.
,
Cohen
,
E.
, and
Wakil
,
J.
,
2007
, “
Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements
,”
IEEE J. Solid-State Circuits
,
42
(
1
), pp.
56
64
.10.1109/JSSC.2006.885064
29.
Cheng
,
H. C.
,
Huang
,
T. C.
,
Hwang
,
P. W.
, and
Chen
,
W. H.
,
2016
, “
Heat Dissipation Assessment of Through Silicon Via (TSV)-Based 3D IC Packaging for CMOS Image Sensing
,”
Microelectron. Reliab.
,
59
, pp.
84
94
.10.1016/j.microrel.2015.12.028
30.
Nowroz
,
A. N.
,
Hu
,
K.
,
Koushanfar
,
F.
, and
Reda
,
S.
,
2014
, “
Novel Techniques for High-Sensitivity Hardware Trojan Detection Using Thermal and Power Maps
,”
IEEE Trans. Comput. Des. Integr. Circuits Syst.
,
33
(
12
), pp.
1792
1805
.10.1109/TCAD.2014.2354293
31.
Tang
,
Y.
,
Li
,
S.
,
Zhang
,
F.
, and
Fang
,
L.
,
2018
, “
Thermal Maps Based HT Detection Using Spatial Projection Transformation
,”
IET Inf. Secur.
,
12
(
4
), pp.
356
361
.10.1049/iet-ifs.2017.0354
32.
Zhong
,
J.
, and
Wang
,
J.
,
2018
, “
Thermal Images Based Hardware Trojan Detection Through Differential Temperature Matrix
,”
Optik
,
158
, pp.
855
860
.10.1016/j.ijleo.2017.12.145
33.
Banerjee
,
K.
,
Souri
,
S. J.
,
Kapur
,
P.
, and
Saraswat
,
K. C.
,
2001
, “
3-D Ics: A Novel Chip Design for Improving Deep-Submicrometer Interconnect Performance and Systems-ON-Chip Integration
,”
Proc. IEEE
,
89
(
5
), pp.
602
633
.10.1109/5.929647
34.
Choobineh
,
L.
,
Jones
,
J.
, and
Jain
,
A.
,
2017
, “
Experimental and Numerical Investigation of Interdie Thermal Resistance in Three-Dimensional Integrated Circuits
,”
ASME J. Electron. Packag.
,
139
(
2
), p.
020908
.10.1115/1.4036404
35.
Wang
,
Z.
,
Bovik
,
A. C.
,
Sheikh
,
H. R.
, and
Simoncelli
,
E. P.
,
2004
, “
Image Quality Assessment: From Error Visibility to Structural Similarity
,”
IEEE Trans. Image Process.
,
13
(
4
), pp.
600
612
.10.1109/TIP.2003.819861
36.
Brunet
,
D.
,
Vrscay
,
E. R.
, and
Wang
,
Z.
,
2012
, “
On the Mathematical Properties of the Structural Similarity Index
,”
IEEE Trans. Image Process.
,
21
(
4
), pp.
1488
1499
.10.1109/TIP.2011.2173206
37.
Gao
,
Y.
,
Rehman
,
A.
, and
Wang
,
Z.
,
2011
, “
CW-SSIM Based Image Classification
,”
18th IEEE International Conference on Image Processing
, Brussels, Belgium, Sept. 11–14, pp.
1249
1252
.10.1109/ICIP.2011.6115659
38.
Pan
,
B.
,
Qian
,
K.
,
Xie
,
H.
, and
Asundi
,
A.
,
2009
, “
Two-Dimensional Digital Image Correlation for in-Plane Displacement and Strain Measurement: A Review
,”
Meas. Sci. Technol.
,
20
(
6
), p.
062001
.10.1088/0957-0233/20/6/062001
39.
Sadek
,
S.
,
Iskander
,
M. G.
, and
Liu
,
J.
,
2003
, “
Accuracy of Digital Image Correlation for Measuring Deformations in Transparent Media
,”
J. Comput. Civ. Eng.
,
17
(
2
), pp.
88
96
.10.1061/(ASCE)0887-3801(2003)17:2(88)
40.
Brunelli
,
R.
, and
Mich
,
O.
,
2001
, “
Histograms Analysis for Image Retrieval
,”
Pattern Recognit.
,
34
(
8
), pp.
1625
1637
.10.1016/S0031-3203(00)00054-6
41.
Zhu
,
R.
, and
Wang
,
Y.
,
2012
, “
Application of Improved Median Filter on Image Processing
,”
J. Comput.
,
7
(
4
), pp.
838
841
.http://www.jcomputers.us/index.php?m=content&c=index&a=show&catid=124&id=2046
You do not currently have access to this content.