Abstract

Flexible electronics are electronic devices and components that can be stretched, bent, twisted, and folded without losing their functionality. Flexible electronics is conformable, lightweight, easily tailorable, and low-cost, and thus, flexible electronics is increasingly being explored in health care, internet of things, automotive, aerospace, communication, safety, security, and food-related applications. Also, flexible electronics can now support increased functionality as well as various fabrication techniques. With an increased adaptation of flexible electronics, research is being conducted to better understand the failure mechanism of flexible electronics and thus improve their reliability and service life. In this paper, a cyclic mandrel bend test has been designed and carried out on printed conductors with PET and PI substrates. With the designed test apparatus, both tensile and compressive bend tests have been performed. Using a four-wire method, the resistance change of the printed conductors with different widths has been measured in situ under tensile and compressive loading conditions using mandrels with different radii. The results have been compared among different conductor widths, bending modes, and substrate materials. Besides, in situ SEM images have been taken to understand the failure mechanisms of the printed conductors. Based on the study, it is seen that there exists a direct correlation between the mandrel diameter, the damage in the printed conductor, and thus, the resistance change with cyclic mandrel testing. Also, it is seen that the damage under compressive bending mode is significantly lower than the damage under tensile bending mode.

References

1.
Wong
,
William S.
, and
Alberto
Salleo
, eds.
2009
,
Flexible Electronics: Materials and Applications
, Vol.
11
,
Springer Science & Business Media
, Berlin.
2.
MacDonald
,
W. A.
,
2015
, “
Latest Advances in Substrates for Flexible Electronics
,”
Large Area Flexible Electronics
, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp.
291
314
.
3.
Kirubanandham
,
A.
, and
Basu
,
S.
,
2012
, “
On Characterization of Mechanical Deformation in Flexible Electronic Structures
,”
Application Note-Agilent Technologies Inc.
, Santa Clara, CA.
4.
Lee
,
T.-I.
,
Kim
,
C.
,
Kim
,
M. S.
, and
Kim
,
T.-S.
,
2016
, “
Flexural and Tensile Moduli of Flexible FR4 Substrates
,”
Polym. Test.
,
53
, pp.
70
76
.10.1016/j.polymertesting.2016.05.012
5.
Van Den Ende
,
D. A.
,
Van De Wiel
,
H. J.
,
Kusters
,
R. H.
,
Sridhar
,
A.
,
Schram
,
J. F. M.
,
Cauwe
,
M.
, and
van den Brand
,
J.
,
2014
, “
Mechanical and Electrical Properties of Ultra-Thin Chips and Flexible Electronics Assemblies During Bending
,”
Microelectron. Reliab.
,
54
(
12
), pp.
2860
2870
.10.1016/j.microrel.2014.07.125
6.
Van Den Ende
,
D.
,
Verhoeven
,
F.
,
Eijnden
,
P. V. D.
,
Kusters
,
R.
,
Sridhar
,
A.
,
Cauwe
,
M.
, and
van den Brand
,
J.
,
2013
, “
High Curvature Bending Characterization of Ultra-Thin Chips and Chip-on-Foil Assemblies
,” 2013 Eurpoean Microelectronics Packaging Conference (
EMPC
),
Grenoble, France, Sept. 9–12, pp.
1
6
.https://ieeexplore.ieee.org/document/6698673
7.
Marinov
,
V. R.
,
2017
, “
The IC in the Flexible Hybrid Electronics Technology: Flexibility and Bend Testing
,”
Int. Symp. Microelectron.
,
2017
(
1
), pp.
000103
000108
.10.4071/isom-2017-TP42_064
8.
Wright
,
D. N.
,
Vardøy
,
A.-S. B.
,
Belle
,
B. D.
,
Visser Taklo
,
M. M.
,
Hagel
,
O.
,
Xie
,
L.
,
Danestig
,
M.
, and
Eriksson
,
T.
,
2017
, “
Bending Machine for Testing Reliability of Flexible Electronics
,” 2017 IMAPS Nordic Conference on Microelectronics Packaging (
NordPac
),
Gothenburg, Sweden, June 18–20, pp.
47
52
.10.1109/NORDPAC.2017.7993162
9.
Cairns
,
D. R.
, and
Crawford
,
G. P.
,
2005
, “
Electromechanical Properties of Transparent Conducting Substrates for Flexible Electronic Displays
,”
Proc. IEEE
,
93
(
8
), pp.
1451
1458
.10.1109/JPROC.2005.851515
10.
Alzoubi
,
K.
,
Hamasha
,
M. M.
,
Lu
,
S.
, and
Sammakia
,
B.
,
2011
, “
Bending Fatigue Study of Sputtered ITO on Flexible Substrate
,”
J. Display Technol.
,
7
(
11
), pp.
593
600
.10.1109/JDT.2011.2151830
11.
Sondhi
,
K.
,
Avuthu
,
S. G. R.
,
Richstein
,
J.
,
Fan
,
Z. H.
, and
Nishida
,
T.
,
2020
, “
Characterization of Bending, Crease, Aging, and Immersion Effects on Flexible Screen-Printed Silver Traces
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
10
(
3
), pp.
444
456
.10.1109/TCPMT.2019.2944349
12.
Zhou
,
Y.
,
Sivapurapu
,
S.
,
Swaminathan
,
M.
, and
Sitaraman
,
S. K.
,
2020
, “
Mechanical and High-Frequency Electrical Study of Printed, Flexible Antenna Under Deformation
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
10
(
7
), pp.
1088
1100
.10.1109/TCPMT.2020.2995532
13.
Zhou
,
Y.
,
Hu
,
K.
,
Tentzeris
,
M. M.
, and
Sitaraman
,
S. K.
,
2022
, “
Mechanical and Ka-Band Electrical Reliability Testing of Interconnects in 5G Wearable System-on-Package Designs Under Bending
,” 2022 IEEE 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31–June 3, pp.
914
923
.10.1109/ECTC51906.2022.00149
14.
Alzoubi
,
K.
,
Lu
,
S.
,
Sammakia
,
B.
, and
Poliks
,
M.
,
2011
, “
Experimental and Analytical Studies on the High Cycle Fatigue of Thin Film Metal on PET Substrate for Flexible Electronics Applications
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
1
(
1
), pp.
43
51
.10.1109/TCPMT.2010.2100911
15.
Chen
,
R.
,
Chow
,
J.
, and
Sitaraman
,
S. K.
,
2022
, “
Damage Evolution of Double-Sided Copper Conductor on Multi-Layer Flexible Substrate Under Bending
,” 2022 IEEE 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31–June 3, pp.
729
738
.10.1109/ECTC51906.2022.00122
16.
Chen
,
R.
,
Chow
,
J. H.
,
Zhou
,
Y.
,
Meth
,
J. S.
, and
Sitaraman
,
S. K.
,
2021
, “
Cyclic Bending Effects on Resistance of Screen-Printed Silver Conductors
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
11
(
11
), pp.
1877
1888
.10.1109/TCPMT.2021.3108491
17.
Chen
,
R.
,
Chow
,
J. H.
,
Taylor
,
C.
,
Meth
,
J.
, and
Sitaraman
,
S. K.
,
2020
, “
Mechanical and Electrical Behavior of Printed Silver Conductor in Adaptive Curvature Flexure Test
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
10
(
5
), pp.
806
816
.10.1109/TCPMT.2020.2985649
18.
Kim
,
B.-J.
,
Shin
,
H.-A.-S.
,
Jung
,
S.-Y.
,
Cho
,
Y.
,
Kraft
,
O.
,
Choi
,
I.-S.
, and
Joo
,
Y.-C.
,
2013
, “
Crack Nucleation During Mechanical Fatigue in Thin Metal Films on Flexible Substrates
,”
Acta Mater.
,
61
(
9
), pp.
3473
3481
.10.1016/j.actamat.2013.02.041
19.
Kim
,
T.-W.
,
Lee
,
J.-S.
,
Kim
,
Y.-C.
,
Joo
,
Y.-C.
, and
Kim
,
B.-J.
,
2019
, “
Bending Strain and Bending Fatigue Lifetime of Flexible Metal Electrodes on Polymer Substrates
,”
Materials
,
12
(
15
), p.
2490
.10.3390/ma12152490
20.
Cahn
,
G.
,
Barrios
,
A.
,
Graham
,
S.
,
Meth
,
J.
,
Antoniou
,
A.
, and
Pierron
,
O.
,
2020
, “
The Role of Strain Localization on the Electrical Behavior of Flexible and Stretchable Screen Printed Silver Inks on Polymer Substrates
,”
Materials
,
10
, p.
100642
.10.1016/j.mtla.2020.100642
21.
Huang
,
Q.
,
Al-Milaji
,
K. N.
, and
Zhao
,
H.
,
2018
, “
Inkjet Printing of Silver Nanowires for Stretchable Heaters
,”
ACS Appl. Nano Mater.
,
1
(
9
), pp.
4528
4536
.10.1021/acsanm.8b00830
You do not currently have access to this content.