Cubical granite specimens were fractured by borehole pressurization of 1 cP water, 80 cP oil and via a urethane sleeve. Viscous oil tends to generate thick and planar cracks with few branches, while water tends to generate thin and wavelike cracks with many secondary branches. While penetrating fluids extended cracks rapidly, pressurization via a urethane sleeve led to stepwise crack extension. Fault-plane solutions of AE (Acoustic Emission) events indicated that shear-type mechanisms were dominant during water injection and sleeve pressurization, whereas tensile-type mechanisms were dominant during oil injection. These results could be helpful in optimizing stimulation treatments in the petroleum industry.

1.
Howard
,
G. C.
, and
Fast
,
C. R.
,
1970
, “
Hydraulic Fracturing
,” Society of Petroleum Engineers of AIME.
2.
Gidley
,
J. L.
,
Holditch
,
S. A.
,
Nierode
,
D. E.
, and
Veatch
, Jr.,
R. W.
,
1989
, “
Recent Advances in Hydraulic Fracturing
,” Society of Petroleum Engineers of AIME.
3.
Hubbert
,
M. K.
, and
Willis
,
D. G.
,
1957
, “
Mechanics of Hydraulic Fracturing
,”
Petroleum Transactions American Society of Mining Engineers
,
210
, pp.
153
168
.
4.
Haimson
,
B. C.
,
1978
, “
The Hydrofracturing Stress Measuring Method and Recent Field Results
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
15
, pp.
167
178
.
5.
Mizuta
,
Y.
,
Sano
,
O.
,
Ogino
,
S.
, and
Katoh
,
H.
,
1987
, “
Three Dimensional Stress Determination by Hydraulic Fracturing for Underground Excavation Design
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
24
, pp.
15
29
.
6.
Baria
,
R.
, and
Green
,
A. S. P.
,
1986
, “
Seismicity Induced during a Viscous Stimulation at the Camborne School of Mines Hot Dry Rock Geothermal Energy Project in Cornwall, England
,”
Progress in Acoustic Emission III, The Japanese Society of NDI
,
pp.
407
429
.
7.
Sasaki, S., 1995, “A Study on Characteristics and Source Mechanism of Acoustic Emission Induced by Hydraulic Fracturing,” Faculty of Science, Tohoku University, Sendai. (in Japanese).
8.
Talebi
,
S.
, and
Cornet
,
F. H.
,
1987
, “
Analysis of the Microseismicity Induced by a Fluid Injection in a Granitic Rock Mass
,”
Geophys. Res. Lett.
,
14
, pp.
227
230
.
9.
Cornet, F. H., 1992, “Fracture Processes Induced by Forced Fluid Percolation,” Volcanic Seismology, IAVCEI Proceedings in Volcanology, 3, edited by Gasparini, P., Scarpa, R., and Aki, K., Springer Verlag, pp. 407–431.
10.
Zoback
,
M. D.
,
Rummel
,
F.
,
Jung
,
R.
, and
Raleigh
,
C. B.
,
1977
, “
Laboratory Hydraulic Fracturing Experiments in Intact and Pre-Fractured Rock
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
14
, pp.
49
58
.
11.
Baria
,
R.
,
Green
,
A. S. P.
, and
Jones
,
R. H.
,
1989
, “
Anomalous Seismic Events Observed at the CSM HDR Project, U.K.
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
26
, pp.
257
269
.
12.
Roegiers, J.-C., 1997, oral communication.
13.
Lockner
,
D.
, and
Byerlee
,
J. D.
,
1977
, “
Hydrofracture in Weber Sandstone at High Confining Pressure and Differential Stress
,”
J. Geophys. Res.
,
82
, pp.
2018
2026
.
14.
Majer
,
E. L.
, and
Doe
,
T. W.
,
1986
, “
Studying Hydrofractures by High Frequency Seismic Monitoring
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
23
, pp.
185
199
.
15.
Matsunaga
,
I.
,
Kobayashi
,
H.
,
Sasaki
,
S.
, and
Ishida
,
T.
,
1993
, “
Studying Hydraulic Fracturing Mechanism by Laboratory Experiments with Acoustic Emission Monitoring
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
30
, pp.
909
912
.
16.
Ishida
,
T.
,
Chen
,
Q.
, and
Mizuta
,
Y.
,
1997
, “
Effect of Injected Water on Hydraulic Fracturing Deduced from Acoustic Emission Monitoring
,”
Pure Appl. Geophys.
,
150
, pp.
627
646
.
17.
Ishida
,
T.
,
2001
, “
Acoustic Emission Monitoring of Hydraulic Fracturing in Laboratory and Field
,”
Constr. Build. Mater.
,
15
, pp.
283
295
.
18.
Kirsch, C., 1898, “Die Theorie der Elastizita¨t und die Bedu¨rfnisse der Festigkeitslehre, Zeitschrift des Vereines Deutscher Ingenieure,” 42, pp. 797–807. (in German).
19.
Crouch, S. L., and Starfield, A. M., 1983, Boundary Element Methods in Solid Mechanics, Uniwin Hyman.
20.
Rothman
,
R. L.
,
Greenfield
,
R. J.
, and
Hardy
, Jr.,
H. R.
,
1974
, “
Errors in Hypocenter Location due to Velocity Anisotropy
,”
Bull. Seismol. Soc. Am.
,
64
, pp.
1993
1996
.
21.
Ishida
,
T.
,
Chen
,
Q.
,
Mizuta
,
Y.
, and
Roegiers
,
J.-C.
,
1998
, “
Influence of Fluid Viscosity on the Hydraulically Induced Crack Geometry
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
35
(
4/5
), pp.
460
462
. (Paper No. 30).
22.
Zoback, M. D., and Pollard D. D., 1978, “Hydraulic Fracture Propagation and the Interpretation of Pressure Time Records for In-Situ Stress Determination,” Proc. of 19th US Rock Mech. Symp., Mackay School of Mines, Reno, Nevada, pp. 14–22.
23.
Carter, R. D., 1957, Appendix to “Optimum Fluid Characteristics for Fracturing Extension,” by G. C. Howard and C. R. Fast, Drill. and Prod. Prac., API, p. 267.
24.
Howard
,
G. C.
, and
Fast
,
C. R.
,
1957
, “
Optimum Fluid Characteristics for Fracturing Extension
,” Drill. & Prod. Prac., 261–270.
25.
Hill
,
D. P.
,
1977
, “
A Model for Earthquake Swarms
,”
J. Geophys. Res.
,
82
, pp.
1347
1352
.
26.
Dingwell, D. B., 1995, “Viscosity and Anelasticity of Melts,” In “Mineral Physics and Crystallography: a Handbook of Physical Constants,” edited by Ahrens, T. J., American Geophysical Union, pp. 209–217.
27.
Boler
,
F. M.
, and
Spetzler
,
H.
,
1986
, “
Radiated Seismic Energy and Strain Energy Release in Laboratory Dynamic Tensile Fracture
,”
Pure Appl. Geophys.
,
124
, pp.
759
772
.
28.
Hayashi, K., Motegi, S., and Abe, H., 1988, “Characteristics of Energy of Elastic Waves due to Sudden Growth of Subsurface Reservoir Cracks for Geothermal Heat Extraction,” in “Progress in Acoustic Emission,” edited by Yamaguchi, K., Takahashi, H., and Niitsuma, H., The Japanese Society for NDI, pp. 147–152.
You do not currently have access to this content.