Carbonate looping promises low energy penalties for postcombustion CO2-capture and is particularly suited for retrofitting existing power plants. To further improve the process, a new concept with an indirectly heated calciner using heat pipes was developed, offering even higher plant efficiencies and lower CO2 avoidance costs than the oxy-fired standard carbonate looping process. The concept of the indirectly heated carbonate looping (IHCL) process was tested at sufficient scale in a 300 kWth pilot plant at Technische Universität Darmstadt. The paper presents a technical overview of the process and shows first test results of the pilot plant. Furthermore, the concept is economically evaluated and compared to other carbon capture processes.

References

1.
Abu Zahra
,
M. R. M.
,
Fernandez
,
E. S.
, and Goetheer, E. L. V.,
2011
, “Guidelines for Process Development and Future Cost Reduction of CO2 Post-Combustion Capture,”
Energy Procedia
,
4
, pp.
1051
1057
.
2.
Panesar
,
R.
,
Lord
,
M.
,
Simpson
,
S.
,
White
,
V.
,
Gibbins
,
J.
, and
Reddy
,
S.
,
2006
, “
Coal-Fired Advanced Supercritical Boiler/Turbine Retrofit With CO2 Capture
,”
8th International Conference on Greenhouse Gas Control Technologies
, Trondheim, Norway, June 19–22.
3.
Martelli
,
E.
,
Kreutz
,
T.
, and
Consonni
,
S.
,
2009
, “Comparison of Coal IGCC With and Without CO2 Capture and Storage: Shell Gasification With Standard vs. Partial Water Quench,”
Energy Procedia
,
1
(
1
), pp.
607
614
.
4.
Keller
,
D.
, and
Scholz
,
M. H.
,
2010
, “
Development Perspectives of Lignite-Based IGCC Plants With CCS
,”
VGB PowerTech
,
90
(
4
), pp.
30
34
.
5.
Epple
,
B.
, and
Ströhle
,
J.
,
2008
, “
CO2 Capture Based on Chemical and Carbonate Looping
,”
VGB PowerTech
,
88
(
11
), pp.
85
89
.
6.
Bailey
,
D. W.
, and
Feron
,
P. H. M.
,
2005
, “
Post-Combustion Decarbonisation Processes
,”
Oil Gas Sci. Technol.
,
60
(
3
), pp.
461
474
.
7.
Bouillon
,
P. A.
,
Hennes
,
S.
, and
Mahieux
,
C.
,
2009
, “
ECO2: Post-Combustion or Oxyfuel—A Comparison Between Coal Power Plants With Integrated CO2 Capture
,”
Energy Procedia
,
1
(
1
), pp.
4015
4022
.
8.
Abanades
,
J. C.
,
Anthony
,
E. J.
, Wang, J., and Oakey, J. E.,
2005
, “Fluidized Bed Combustion Systems Integrating CO2 Capture With CaO,”
Environ. Sci. Technol.
,
39
(
8
), pp.
2861
2866
.
9.
Ströhle
,
J.
,
Junk
,
M.
,
Kremer
,
J.
,
Galloy
,
A.
, and
Epple
,
B.
,
2014
, “Carbonate Looping Experiments in a 1 MWth Pilot Plant and Model Validation,”
Fuel
,
127
, pp.
13
22
.
10.
Shimizu
,
T.
,
Hirama
,
T.
, Hosoda, H., Kitano, k., Inagaki, M., and Tejima, K.,
1999
, “A Twin Fluid-Bed Reactor for Removal of CO2 from Combustion Processes,”
Chem. Eng. Res. Des.
,
77
(
1
), pp.
62
68
.
11.
Junk
,
M.
,
Reitz
,
M.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2013
, “Thermodynamic Evaluation and Cold Flow Model Testing of an Indirectly Heated Carbonate Looping Process,”
Chem. Eng. Technol.
,
36
(
9
), pp.
1479
1487
.
12.
Höftberger
,
D.
, and
Karl
,
J.
,
2013
, “Self-Fluidization in an Indirectly Heated Calciner,”
Chem. Eng. Technol.
,
36
(
9
), pp.
1533
1538
.
13.
Bhatia
,
S. K.
, and
Perlmutter
,
D. D.
,
1983
, “Effect of the Product Layer on the Kinetics of the CO2-Lime Reaction,”
AIChE J.
,
29
(
1
), pp.
79
86
.
14.
Lu
,
D. Y.
,
Hughes
,
R. W.
, and
Anthony
,
E. J.
,
2008
, “Ca-Based Sorbent Looping combustion for CO2 Capture in Pilot-Scale Dual Fluidized Beds,”
Fuel Process. Technol.
,
89
(
12
), pp.
1386
1395
.
15.
Dieter
,
H.
,
Hawthorne
,
C.
,
Bidwe
,
A. R.
,
Zieba
,
M.
, and
Scheffknecht
,
G.
,
2012
, “
The 200 kWth Dual Fluidized Bed Calcium Looping Pilot Plant for Efficient CO2 Capture: Plant Operating Experiences and Results
,”
21st International Conference on Fluidized Bed Combustion
, Naples, Italy, June 3–6, pp.
397
404
.
16.
Abanades
,
J. C.
,
2012
, “
Session 3: Calcium Looping—Reactor and Process
,”
CaOling Workshop
, Oviedo, Spain, Apr. 19.
17.
Chang
,
M.-H.
,
Huang
,
C.-M.
,
Liu
,
W.-H.
,
Chen
,
W.-C.
, Cheng, J.-y., Chen, W., Wen. T.-W., Ouyang, S., Shen, S.-H., Hsu, H.-W., 2013, “Design and Experimental Investigation of Calcium Looping Process for 3-kWth and 1.9-MWth Facilities,”
Chem. Eng. Technol.
,
36
(
9
), pp.
1525
1532
.
18.
Abanades
,
J. C.
, and
Alvarez
,
D.
,
2003
, “Conversion Limits in the Reaction of CO2 with Lime,”
Energy Fuels
,
17
(
2
), pp.
308
315
.
19.
Grasa
,
G. S.
,
Abanades
,
J. C.
,
Alonso
,
M.
, and
González
,
B.
,
2008
, “Reactivity of Highly Cycled Particles of CaO in a Carbonation/Calcination Loop,”
Chem. Eng. J.
,
137
(
3
), pp.
561
–567.
20.
Sun
,
P.
,
Grace
,
J. R.
,
Lim
,
C. J.
, and
Anthony
,
E. J.
,
2007
, “Removal of CO2 by Calcium-Based Sorbents in the Presence of SO2,”
Energy Fuels
,
21
(
1
), pp.
163
170
.
21.
Coppola
,
A.
,
Montagnaro
,
F.
,
Salatino
,
P.
, and
Scala
,
F.
,
2013
, “Influence of High-Temperature Steam on the Reactivity of CaO Sorbent for CO2 Capture,”
14th International Conference on Fluidization
, Noordwijkerhout, The Netherlands, May 26–31.
22.
Donat
,
F.
,
Florin
,
N. H.
,
Anthony
,
E. J.
, and
Fennell
,
P. S.
,
2012
, “
Influence of High-Temperature Steam on the Reactivity of CaO Sorbent for CO2 Capture
,”
Environ. Sci. Technol.
,
46
(
2
), pp.
1262
1269
.
23.
Junk
,
M.
,
Reitz
,
M.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2013
, “
Design of a 300 kWth Indirectly Heated Carbonate Looping Test Facility
,”
5th IEAGHG High Temperature Solids Looping Network
, Cambridge, UK, Sept. 2–3.
24.
Reitz
,
M.
,
Junk
,
M.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2014
, “Design and Erection of a 300 kWth Indirectly Heated Carbonate Looping Test Facility,”
Energy Procedia
,
63
, pp.
2170
2177
.
25.
Rubin
,
E.
,
Booras
,
G.
,
Davison
,
J.
,
Ekstrom
,
C.
,
Matuszewski
,
M.
,
McCoy
,
S.
, and
Short
,
C.
,
2013
, “
Toward a Common Method of Cost Estimation for CO2 Capture and Storage at Fossil Fuel Power Plants
,”
Global CCS Institute, Docklands
,
Australia
.
26.
Poboß
,
P.
, and
Scheffknecht
,
G.
,
2008
, “
Machbarkeitsstudie für das Carbonate Looping Verfahren zur CO2 Abscheidung aus Kraftwerksrauchgasen
,” COORETEC Machbarkeitsstudie, IVD Universität Stuttgart, BMWi Project 0327771 B, Final Report.
27.
Finkenrath
,
M.
,
2011
, “
Cost and Performance of Carbon Dioxide Capture From Power Generation
,”
International Energy Agency
,
Paris
.
28.
Dieter
,
H.
,
Beirow
,
M.
,
Schweitzer
,
D.
,
Hawthorne
,
C.
, and
Scheffknecht
,
G.
,
2014
, “
Efficiency and Flexibility Potential of Calcium Looping CO2 Capture
,”
Energy Procedia
,
63
, pp.
2129
2137
.
29.
Hoeftberger
,
D.
, and
Karl
,
J.
,
2012
, “
Self-Fluidization in an Indirectly Heated Calciner
,”
2nd International Conference on Chemical Looping
, Darmstadt.
30.
EP
,
2011
, “
CARINA: Capture by Means of the Indirectly Heated Carbonate Looping Process
,”
Technische Universität Darmstadt
, Darmstadt, Germany, EP No. 10,174,156.9.
You do not currently have access to this content.