Thermal energy storage (TES) systems that store sensible heat in liquid media require the use of storage tanks. Spherical tanks require less building material and insulation, which might reduce the overall cost of a TES system while providing structural rigidity. The current study investigates an optimized plate diffuser in a thermocline spherical tank storage system to possibly increase the discharge flow rate without disrupting the thermocline region and without reducing the tank thermal efficiency. For low temperature (10–90 °C heat storage applications), such as heating, ventilation, and air conditioning (HVAC) and thermal water desalination, storing hot water in a thermocline system can increase the system thermal efficiency by up to 40% when compared to a fully mixed water tank and reduce the installation cost by 30% compared to a two-tank system. This study examines using a spherical tank in a thermocline system for such applications. A computational fluid dynamic (CFD) study simulated the discharge process from a spherical storage tank thermocline water system. Thermocline thickness and temperature profile in the tank were numerically determined for Reynolds number, Re = 600 and Froude number, Fr = 1.2; results were then experimentally validated. A CFD parametric study with (500 < Re < 7500) and (0.5 < Fr < 3.3): (i) determined the influence of tank flow dimensionless numbers (Reynolds, Froude, Richardson, and Archimedes) on thermal efficiency and thermocline thickness, (ii) produced an equation to predict the tank thermal efficiency using flow dimensionless numbers, and (iii) estimated the thermocline region volume occupation as a percentage of the total volume. The study of an optimized plate diffuser produced an equation for thermal efficiency based on Re and Fr numbers and estimated a thermocline volume equal to 15% of total tank volume. Flow rate ramp up by a factor of 3 was possible after the thermocline region was formed without losing tank thermal efficiency.

References

1.
Krane
,
R.
, and
Krane
,
M.
,
1992
, “
The Optimum Design of Stratified Thermal Energy Storage Systems—Part I: Development of the Basic Analytical Model
,”
ASME J. Energy Resour. Technol.
,
114
(
3
), pp.
204
208
.
2.
Tester
,
J. W.
,
Drake
,
E. M.
,
Driscoll
,
M. J.
,
Golay
,
M. W.
, and
Peters
,
W. A.
,
2005
,
Sustainable Energy
,
MIT Press
,
Cambridge
.
3.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
153
159
.
4.
Gabbrielli
,
R.
, and
Zamparelli
,
C.
,
2009
, “
Optimal Design of a Molten Salt Thermal Storage Tank for Parabolic Trough Solar Power Plants
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041001
.
5.
Oppel
,
F.
,
Ghajar
,
A.
, and
Moretti
,
P.
,
1986
, “
A Numerical and Experimental Study of Stratified Thermal Storage
,”
ASHRAE Trans.
,
92
(
2A
), pp.
293
309
.
6.
Homan
,
K. O.
, and
Soo
,
S. L.
,
1997
, “
Model of the Transient Stratified Flow Into a Chilled-Water Storage Tank
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4367
4377
.
7.
Brosseau
,
D.
,
Kelton
,
J. W.
,
Ray
,
D.
,
Edgar
,
M.
,
Chisman
,
K.
, and
Emms
,
B.
,
2005
, “
Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems in Parabolic Trough Power Plants
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp.
109
116
.
8.
Han
,
Y. M.
,
Wang
,
R. Z.
, and
Dai
,
Y. J.
,
2009
, “
Thermal Stratification Within the Water Tank
,”
Renewable Sustainable Energy Rev.
,
13
(
5
), pp.
1014
1026
.
9.
Qin
,
F. G. F.
,
Yang
,
X.
,
Ding
,
Z.
,
Zuo
,
Y.
,
Shao
,
Y.
,
Jiang
,
R.
, and
Yang
,
X.
,
2012
, “
Thermocline Stability Criterions in Single-Tanks of Molten Salt Thermal Energy Storage
,”
Appl. Energy
,
97
, pp.
816
821
.
10.
Haller
,
M. Y.
,
Cruickshank
,
C. A.
,
Streicher
,
W.
,
Harrison
,
S. J.
,
Andersen
,
E.
, and
Furbo
,
S.
,
2009
, “
Methods to Determine Stratification Efficiency of Thermal Energy Storage Processes Review and Theoretical Comparison
,”
Sol. Energy
,
83
(
10
), pp.
1847
1860
.
11.
Berkel
,
J. V.
,
1997
,
Thermocline Entrainment in Stratified Energy Stores
,
Technische Universiteit Eindhoven
,
Eindhoven, The Netherlands
.
12.
Shah
,
L. J.
, and
Furbo
,
S.
,
2003
, “
Entrance Effects in Solar Storage Tanks
,”
Sol. Energy
,
74
(
4
), pp.
337
348
.
13.
Baines
,
W.
,
Martin
,
W.
, and
Sinclair
,
L.
,
1982
, “
On the Design of Stratified Thermal Storage Tanks
,”
ASHRAE Trans.
,
88
(
2
), pp. 426–439.
14.
Chung
,
J. D.
,
Cho
,
S. H.
,
Tae
,
C. S.
, and
Yoo
,
H.
,
2008
, “
The Effect of Diffuser Configuration on Thermal Stratification in a Rectangular Storage Tank
,”
Renewable Energy
,
33
(
10
), pp.
2236
2245
.
15.
Khan
,
F.
, and
Savilonis
,
B. J.
,
2014
, “
Thermal Stratification in Spherical Tanks
,”
ASME
Paper No. ES2014-6429.
16.
Nelson
,
J. E. B.
,
Balakrishnan
,
A. R.
, and
Srinivasa Murthy
,
S.
,
1999
, “
Parametric Studies on Thermally Stratified Chilled Water Storage Systems
,”
Appl. Therm. Eng.
,
19
(
1
), pp.
89
115
.
17.
ANSYS
,
2011
, “
ANSYS CFX-Solver Theory Guide
,” ANSYS Inc., Canonsburg, PA.
18.
Ismail
,
K.
,
1997
, “
Models of Liquid Storage Tanks
,”
Energy
,
22
(
8
), pp.
805
815
.
19.
Fernández-Seara
,
J.
,
Uhı′a
,
F. J.
, and
Sieres
,
J.
,
2007
, “
Experimental Analysis of a Domestic Electric Hot Water Storage Tank—Part II: Dynamic Mode of Operation
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
137
144
.
20.
Bayón
,
R.
, and
Rojas
,
E.
,
2013
, “
Simulation of Thermocline Storage for Solar Thermal Power Plants: From Dimensionless Results to Prototypes and Real-Size Tanks
,”
Int. J. Heat Mass Transfer
,
60
, pp.
713
721
.
21.
Bakkar
,
A.
,
2008
, “
Turbulence Modeling
,” http://www.Bakker.org
You do not currently have access to this content.