Surfactants have the potential to reduce the interfacial tension between oil and water and mobilize the residual oil. An important process which makes the surfactant injection to be less effective is loss of surfactant to porous medium during surfactant flooding. This study highlights the results of a laboratory study on dynamic adsorption and desorption of Trigoonella foenum-graceum (TFG) as a new nonionic surfactant. The experiments were carried out at confining pressure of 3000 psi and temperature of 50 °C. Surfactant solutions were continuously injected into the core plug at an injection rate of 0.5 mL/min until the effluent concentration was the same as initial surfactant concentration. The surfactant injection was followed by distilled water injection until the effluent surfactant concentration was reduced to zero. The effluent concentrations of surfactant were measured by conductivity technique. Results showed that the adsorption of surfactant is characterized by a short period of rapid adsorption, followed by a long period of slower adsorption, and also, desorption process is characterized by a short, rapid desorption period followed by a longer, slow desorption period. The experimental adsorption and desorption data were modeled by four well-known models (pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models). The correlation coefficient of models revealed that the pseudo-second-order model predicted the experimental data with an acceptable accuracy.

References

1.
Sedaghat
,
M. H.
,
Ghazanfari
,
M. H.
,
Parvazdavani
,
M.
, and
Morshedi
,
S.
,
2013
, “
Experimental Investigation of Microscopic/Macroscopic Efficiency of Polymer Flooding in Fractured Heavy Oil Five-Spot Systems
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032901
.
2.
Ahmadi
,
M. A.
, and
Shadizadeh
,
S. R.
,
2013
, “
Induced Effect of Adding Nano Silica on Adsorption of a Natural Surfactant Onto Sandstone Rock: Experimental and Theoretical Study
,”
J. Pet. Sci. Eng.
,
112
, pp.
239
247
.
3.
Manshad
,
A. K.
,
Rostami
,
H.
,
Hosseini
,
S. M.
, and
Rezaei
,
H.
,
2016
, “
Application of Artificial Neural Network–Particle Swarm Optimization Algorithm for Prediction of Gas Condensate Dew Point Pressure and Comparison With Gaussian Processes Regression–Particle Swarm Optimization Algorithm
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032903
.
4.
Manshad
,
A. K.
,
Rostami
,
H.
,
Rezaei
,
H.
, and
Hosseini
,
S. M.
,
2015
, “
Application of Artificial Neural Network-Particle Swarm Optimization Algorithm for Prediction of Asphaltene Precipitation During Gas Injection Process and Comparison With Gaussian Process Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062904
.
5.
Kamath
,
K.
, and
Yan
,
S.
,
1981
, “
Enhanced Oil Recovery by Flooding With Dilute Aqueous Chemical Solutions
,”
ASME J. Energy Resour. Technol.
,
103
(
4
), pp.
285
290
.
6.
Barati
,
A.
,
Najafi
,
A.
,
Daryasafar
,
A.
,
Nadali
,
P.
, and
Moslehi
,
H.
,
2016
, “
Adsorption of a New Nonionic Surfactant on Carbonate Minerals in Enhanced Oil Recovery: Experimental and Modeling Study
,”
Chem. Eng. Res. Des.
,
105
, pp.
55
63
.
7.
Ahmadi
,
M. A.
, and
Shadizadeh
,
S. R.
,
2013
, “
Implementation of a High-Performance Surfactant for Enhanced Oil Recovery From Carbonate Reservoirs
,”
J. Pet. Sci. Eng.
,
110
, pp.
66
73
.
8.
Lv
,
W.
,
Bazin
,
B.
,
Ma
,
D.
,
Liu
,
Q.
,
Han
,
D.
, and
Wu
,
K.
,
2011
, “
Static and Dynamic Adsorption of Anionic and Amphoteric Surfactants With and Without the Presence of Alkali
,”
J. Pet. Sci. Eng.
,
77
(
2
), pp.
209
218
.
9.
Zhang
,
R.
, and
Somasundaran
,
P.
,
2006
, “
Advances in Adsorption of Surfactants and Their Mixtures at Solid/Solution Interfaces
,”
Adv. Colloid Interface Sci.
,
123–126
, pp.
213
229
.
10.
Yang
,
H. D.
, and
Wadleigh
,
E. F.
,
2000
, “
Dilute Surfactant IOR-Design Improvement for Massive, Fractured Carbonate Applications
,”
SPE International Petroleum Conference and Exhibition
, Villahermosa, Mexico, Feb. 1–3,
SPE
Paper No. 59009-MS.
11.
Moritis
,
G.
,
2000
, “
Report on Enhanced Oil Recovery
,”
Oil Gas J.
,
15
, pp. 503–529.
12.
Schramm
,
L. L.
,
2000
,
Surfactants: Fundamentals and Applications in the Petroleum Industry
,
Cambridge University Press
,
Cambridge, UK
.
13.
Ahmadi
,
M. A.
, and
Shadizadeh
,
S. R.
,
2012
, “
Adsorption of Novel Nonionic Surfactant and Particles Mixture in Carbonates: Enhanced Oil Recovery Implication
,”
Energy Fuels
,
26
(
8
), pp.
4655
4563
.
14.
Ahmadi
,
M. A.
, and
Shadizadeh
,
S. R.
,
2013
, “
Experimental Investigation of Adsorption of a New Nonionic Surfactant on Carbonate Minerals
,”
Fuel
,
104
, pp.
462
467
.
15.
Yassin
,
M. R.
,
Ayatollahi
,
S.
,
Rostami
,
B.
,
Hassani
,
K.
, and
Taghikhani
,
V.
,
2015
, “
Micro-Emulsion Phase Behavior of a Cationic Surfactant at Intermediate Interfacial Tension in Sandstone and Carbonate Rocks
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012905
.
16.
Childs
,
J. D.
,
Acosta
,
E.
,
Scamehorn
,
J. F.
, and
Sabatini
,
D. A.
,
2005
, “
Surfactant-Enhanced Treatment of Oil-Based Drill Cuttings
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
153
162
.
17.
Prevot
,
A. B.
,
Gulmini
,
M.
,
Zelano
,
V.
, and
Pramauro
,
E.
,
2001
, “
Microwave-Assisted Extraction of Polycyclic Aromatic Hydrocarbons From Marine Sediments Using Nonionic Surfactant Solutions
,”
Anal. Chem.
,
73
(
15
), pp.
3790
3795
.
18.
Ahmadi
,
M. A.
,
Zendehboudi
,
S.
,
Shafiei
,
A.
, and
James
,
L.
,
2012
, “
Nonionic Surfactant for Enhanced Oil Recovery From Carbonates: Adsorption Kinetics and Equilibrium
,”
Ind. Eng. Chem. Res.
,
51
(
29
), pp.
9894
9905
.
19.
Zendehboudi
,
S.
,
Ahmadi
,
M. A.
,
Rajabzadeh
,
A. R.
,
Mahinpey
,
N.
, and
Chatzis
,
I.
,
2013
, “
Experimental Study on Adsorption of a New Surfactant Onto Carbonate Reservoir Samples—Application to EOR
,”
Can. J. Chem. Eng.
,
91
(
8
), pp.
1439
1449
.
20.
Somasundaran
,
P.
, and
Huang
,
L.
,
2000
, “
Adsorption/Aggregation of Surfactants and Their Mixtures at Solid–Liquid Interfaces
,”
Adv. Colloid Interface Sci.
,
88
(1–2), pp.
179
208
.
21.
Hirasaki
,
G. J.
,
Miller
,
C. A.
, and
Pope
,
G. A.
,
2006
, “
Surfactant Based Enhanced Oil Recovery and Foam Mobility Control
,” 3rd Annual and Final Technical Report, Rice University and U.S. Department of Energy, Houston, TX, Report No.
DE-FC26 03NT15406
.
22.
Somasundaran
,
P.
, and
Zhang
,
L.
,
2006
, “
Adsorption of Surfactants on Minerals for Wettability Control in Improved Oil Recovery Processes
,”
J. Pet. Sci. Eng.
,
52
(1–4), pp.
198
212
.
23.
Austad
,
T.
,
Bjørkum
,
P. A.
, and
Rolfsvag
,
T. A.
,
1991
, “
Adsorption II. Nonequilibrium Adsorption of Surfactants Onto Three Reservoir Cores From the Norwegian Continental Shelf. The Effects of Clay Minerals
,”
J. Pet. Sci. Eng.
,
6
(
2
), pp.
125
135
.
24.
Bae
,
J. H.
, and
Petrick
,
C. B.
,
1977
, “
Adsorption/Retention of Petroleum Sulfonates in Berea Cores
,”
SPE J.
,
17
(
05
), pp.
353
357
.
25.
Somasundaran
,
S.
, and
Grieves
,
G. R.
,
1975
, “
Advances in Interfacial Phenomena of Particulate/Solution/Gas Systems
,”
AIChE Symp. Ser.
,
71
(
150
), p.
124
.
26.
Zhang
,
L.
,
Somasundaran
,
P.
,
Mielczarski
,
J.
, and
Mielczarski
,
E.
,
2002
, “
Adsorption Mechanism of n-Dodecyl-β-D-Maltoside on Alumina
,”
J. Colloid Interface Sci.
,
256
(
1
), pp.
16
22
.
27.
James
,
R. O.
, and
Healy
,
T. W.
,
1972
, “
Adsorption of Hydrolyzable Metal Ions at the Oxide—Water Interface—III: A Thermodynamic Model of Adsorption
,”
J. Colloid Interface Sci.
,
40
(
1
), pp.
65
81
.
28.
Das
,
D.
,
Panigrahi
,
S.
,
Misra
,
P. K.
, and
Nayak
,
A.
,
2008
, “
Effect of Organized Assemblies—Part 4: Formulation of Highly Concentrated Coal–Water Slurry Using a Natural Surfactant
,”
Energy Fuels
,
22
(
3
), pp.
1865
1872
.
29.
Paria
,
S.
, and
Khilar
,
K. C.
,
2004
, “
A Review on Experimental Studies of Surfactant Adsorption at the Hydrophilic Solid–Water Interface
,”
Adv. Colloid Interface Sci.
,
110
(
3
), pp.
75
95
.
30.
Peck
,
A. S.
, and
Wadsworth
,
M. E.
,
1964
, “
Infrared Study of the Depression Effect of Fluoride, Sulphate and Chloride on the Chemisorption of Oleate on Fluorite and Barite
,”
7th International Mineral Processing Congress
, New York, pp.
259
267
.
31.
French
,
R. O.
,
Wadsworth
,
M. E.
,
Cook
,
M. A.
, and
Cutler
,
I. B.
,
1954
, “
The Quantitative Application of Infrared Spectroscopy to Studies in Surface Chemistry
,”
J. Phys. Chem.
,
58
(
10
), pp.
805
811
.
32.
Gaudin
,
A. M.
, and
Fuerstenau
,
D. W.
,
1955
, “
Quartz Flotation With Anionic Collectors
,”
Trans. AIME
,
202
, pp.
66
72
.
33.
Lagergren
,
S.
,
1898
,
Zur Theorie der Sogenannten Absorption Gelöster Stoffe
,
PA Norstedt & Söner
, Kungliga Svenska Vetenska Psalka de Miens Handlingar,
24
, pp. 1–39.
34.
Ho
,
Y.-S.
,
2006
, “
Second-Order Kinetic Model for the Sorption of Cadmium Onto Tree Fern: A Comparison of Linear and Non-Linear Methods
,”
Water Res.
,
40
(
1
), pp.
119
125
.
35.
Chien
,
S. H.
, and
Clayton
,
W. R.
,
1980
, “
Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils
,”
Soil Sci. Soc. Am. J.
,
44
(
2
), pp.
265
268
.
36.
Pérez-Marín
,
A. B.
,
Zapata
,
V. M.
,
Ortuño
,
J. F.
,
Aguilar
,
M.
,
Sáez
,
J.
, and
Lloréns
,
M.
,
2007
, “
Removal of Cadmium From Aqueous Solutions by Adsorption Onto Orange Waste
,”
J. Hazard. Mater.
,
139
(
1
), pp.
122
131
.
37.
Weber
,
W. J.
, and
Morris
,
J. C.
,
1963
, “
Kinetics of Adsorption on Carbon From Solution
,”
J. Sanit. Eng. Div. Am. Soc. Civ. Eng.
,
89
, pp.
31
60
.
38.
Bai
,
B.
,
Wu
,
Y.
, and
Grigg
,
R. B.
,
2009
, “
Adsorption and Desorption Kinetics and Equilibrium of Calcium Lignosulfonate on Dolomite Porous Media
,”
J. Phys. Chem. C
,
113
(
31
), pp.
13772
13779
.
39.
Low
,
M. J. D.
,
1960
, “
Kinetics of Chemisorption of Gases on Solids
,”
Chem. Rev.
,
60
(
3
), pp.
267
312
.
40.
Ho
,
Y.-S.
,
2003
, “
Removal of Copper Ions From Aqueous Solution by Tree Fern
,”
Water Res.
,
37
(
10
), pp.
2323
2330
.
41.
Parthasarathy
,
V. A.
,
Chempakam
,
B.
, and
Zachariah
,
T. J.
,
2008
,
Chemistry of Spices
,
CABI
,
Wallingford, UK
.
42.
Dai
,
C.
,
Wang
,
K.
,
Liu
,
Y.
,
Li
,
H.
,
Wei
,
Z.
, and
Zhao
,
M.
,
2015
, “
Reutilization of Fracturing Flowback Fluids in Surfactant Flooding for Enhanced Oil Recovery
,”
Energy Fuels
,
29
(
4
), pp.
2304
2311
.
43.
Sen Gupta
,
S.
, and
Bhattacharyya
,
K. G.
,
2008
, “
Immobilization of Pb(II), Cd(II) and Ni(II)Ions on Kaolinite and Montmorillonite Surfaces From Aqueous Medium
,”
J. Environ. Manage.
,
87
(
1
), pp.
46
58
.
44.
SenthilKumar
,
P.
,
Ramalingam
,
S.
,
Abhinaya
,
R. V.
,
Dinesh Kirupha
,
S.
,
Vidhyadevi
,
T.
, and
Sivanesan
,
S.
,
2012
, “
Adsorption Equilibrium, Thermodynamics, Kinetics, Mechanism and Process Design of Zinc (II) Ions Onto Cashew Nut Shell
,”
Can. J. Chem. Eng.
,
90
(
4
), pp.
973
982
.
45.
Xie
,
X.
,
Weiss
,
W. W.
,
Tong
,
Z.
, and
Morrow
,
N. R.
,
2005
, “
Improved Oil Recovery From Carbonate Reservoirs by Chemical Stimulation
,”
SPE J.
,
10
(
03
), pp.
276
285
.
46.
Seethepalli
,
A.
,
Adibhatla
,
B.
, and
Mohanty
,
K. K.
,
2004
, “
Physiochemical Interactions During Surfactant Flooding of Carbonate Reservoirs
,”
SPE J.
,
9
(
04
), pp.
411
418
.
47.
Thomas
,
M. M.
,
Clouse
,
J. A.
, and
Longo
,
J. M.
,
1993
, “
Adsorption of Organic Compounds on Carbonate Minerals—1: Model Compounds and Their Influence on Mineral Wettability
,”
Chem. Geol.
,
109
(1–4), pp.
201
213
.
48.
Thomas
,
M. M.
,
Clouse
,
J. A.
, and
Longo
,
J. M.
,
1993
, “
Adsorption of Organic Compounds on Carbonate Minerals—3: Influence on Dissolution Rates
,”
Chem. Geol.
,
109
(1–4), pp.
227
237
.
49.
Chen
,
H. L.
,
Lucas
,
L. R.
,
Nogaret
,
L. A. D.
,
Yang
,
H. D.
, and
Kenyon
,
D. E.
,
2001
, “
Laboratory Monitoring of Surfactant Imbibition With Computerized Tomography
,”
SPE Reservoir Eval. Eng.
,
4
(
01
), pp.
16
25
.
You do not currently have access to this content.