The structural parameters of combustion chamber have great impacts on the process of air–fuel mixing, combustion, and emissions of diesel engine. The dynamic characteristics and emission performances could be improved by means of optimizing the parameters of the combustion chamber. In this paper, the key structure of a diesel engine combustion chamber is parameterized, and the influence of individual structural parameter on dynamic characteristics and emissions of the engine is simulated and analyzed by computational fluid dynamics (CFD) software avl-fire. The results show that under constant compression ratio, the in-cylinder peak pressure decreases with increasing inclination angle of the combustion chamber (α), while the height (Tm) and bowl radius (R) have little influence on the in-cylinder peak pressure. With increasing α, NO emissions decrease, and soot emissions first increase and then decrease. With increasing R, both NO and soot emissions decrease first and then increase. Therefore, the combustion chamber parameters could be optimized by comprehensive consideration of cylinder pressure, NO and soot emissions.

References

1.
Jaichandar
,
S.
,
Kumar
,
P. S.
, and
Annamalai
,
K.
,
2012
, “
Combined Effect of Injection Timing and Combustion Chamber Geometry on the Performance of a Biodiesel Fueled Diesel Engine
,”
Energy
,
47
(
1
), pp.
388
394
.
2.
Lei
,
Z.
,
Chang-Lu
,
Z.
,
Fu-jun
,
Z.
, and
Yun-shan
,
G.
,
2004
, “
Optimization of Diesel Chamber by Advanced Combustion Simulation
,”
J. Combust. Sci. Technol.
,
10
(
5
), pp.
465
470
.
3.
Jian
,
Z.
,
Chen
,
H.
, and
Ming-Fa
,
Y.
,
2007
, “
Numerical Simulation on the Effect of Combustion Chamber Geometry on Diesel Engine Combustion Process
,”
Chin. Intern. Combust. Engine Eng.
,
28
(
2
), pp.
14
18
.
4.
Xu
,
H.
,
Weiguo
,
L.
,
Xiyan
,
G.
,
Chunming
,
L.
, and
Desheng
,
Y.
,
2006
, “
Studying on the Performance Effected by the Shape of Combustion Chamber
,”
Small Intern. Combust. Engine Motorcycle
,
35
(
1
), pp.
1
5
.
5.
Pengkun
,
S.
,
Guisheng
,
C.
,
Xin
,
W.
,
Bin
,
M.
,
Zunqing
,
Z.
, and
Mingfa
,
Y.
,
2013
, “
Effects of Structure of Combustion Chamber and Injector on Heavy-Duty Diesel Performance and Emission Characteristics
,”
Trans. Chin. Soc. Agric. Mach.
,
44
(
11
), pp.
12
18
.
6.
Deming
,
J.
, 2002,
Higher Principle of Internal Combustion Engine
,
Xi An Jiaotong University Press
, Xi An, China, pp.
109
125
.
7.
Peng
,
Z.
,
Guoxiu
,
L.
, and
Yusong
,
Y.
,
2010
, “
Multi-Dimensional Simulation for Optimization Matching of Intake Swirl and Combustion Chamber in Diesel Engine
,”
Acta Armamentarii
,
31
(
6
), pp.
657
662
.
8.
Xuedong
,
L.
,
2004
, “
Research on Parameter Optimization and Flow Analysis of Combustion System for Automotive Diesel Engine
,”
Ph.D. thesis
, Jilin University, Jilin Sheng, China, p.
121
.
9.
Jaichandar
,
S.
, and
Annamalai
,
K.
,
2013
, “
Combined Impact of Injection Pressure and Combustion Chamber Geometry on the Performance of a Biodiesel Fueled Diesel Engine
,”
Energy
,
55
, pp.
330
339
.
10.
Jaichandar
,
S.
, and
Annamalai
,
K.
,
2012
, “
Effects of Open Combustion Chamber Geometries on the Performance of Pongamia Biodiesel in a DI Diesel Engine
,”
Fuel
,
98
, pp.
272
279
.
11.
Jaichandar
,
S.
, and
Annamalai
,
K.
,
2012
, “
Influences of Re-Entrant Combustion Chamber Geometry on the Performance of Pongamia Biodiesel in a DI Diesel Engine
,”
Energy
,
44
(
1
), pp.
633
640
.
12.
Wei
,
S.
,
Ji
,
K.
,
Leng
,
X.
,
Wang
,
F.
, and
Liu
,
X.
,
2014
, “
Numerical Simulation on Effects of Spray Angle in a Swirl Chamber Combustion System of DI (Direct Injection) Diesel Engines
,”
Energy
,
75
, pp.
289
294
.
13.
Wei
,
S.
,
Wang
,
F.
,
Leng
,
X.
,
Liu
,
X.
, and
Ji
,
K.
,
2013
, “
Numerical Analysis on the Effect of Swirl Ratios on Swirl Chamber Combustion System of DI Diesel Engines
,”
Energy Convers. Manage.
,
75
, pp.
184
190
.
14.
Chen
,
Y.
, and
Lv
,
L.
,
2014
, “
The Multi-Objective Optimization of Combustion Chamber of DI Diesel Engine by NLPQL Algorithm
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1332
1339
.
15.
Yaliwal
,
V. S.
,
Banapurmath
,
N. R.
,
Gireesh
,
N. M.
,
Hosmath
,
R. S.
,
Donateo
,
T.
, and
Tewari
,
P. G.
,
2016
, “
Effect of Nozzle and Combustion Chamber Geometry on the Performance of a Diesel Engine Operated on Dual Fuel Mode Using Renewable Fuels
,”
Renewable Energy
,
93
, pp.
483
501
.
16.
Kakaee
,
A. H.
,
Nasiri-Toosi
,
A.
,
Partovi
,
B.
, and
Paykani
,
A.
,
2016
, “
Effects of Piston Bowl Geometry on Combustion and Emissions Characteristics of a Natural Gas/Diesel RCCI Engine
,”
Appl. Therm. Eng.
,
102
, pp.
1462
1472
.
17.
Wang
,
B.
,
Li
,
T.
,
Ge
,
L.
, and
Ogawa
,
H.
,
2016
, “
Optimization of Combustion Chamber Geometry for Natural Gas Engines With Diesel Micro-Pilot-Induced Ignition
,”
Energy Convers. Manage.
,
122
, pp.
552
563
.
18.
Mamilla
,
V. R.
,
Mallikarjun
,
M. V.
, and
Rao
,
G. L. N.
,
2013
, “
Effect of Combustion Chamber Design on a DI Diesel Engine Fuelled With Jatropha Methyl Esters Blends With Diesel
,”
Procedia Eng.
,
64
, pp.
479
490
.
19.
Vedharaj
,
S.
,
Vallinayagam
,
R.
,
Yang
,
W. M.
, and
Saravanan
,
C. G.
,
2015
, “
Optimization of Combustion Bowl Geometry for the Operation of Kapok Biodiesel-Diesel Blends in a Stationary Diesel Engine
,”
Fuel
,
139
, pp.
561
567
.
20.
Benajes
,
J.
,
Garcia
,
A.
,
Pastor
,
J. M.
, and
Monsalve-Serrano
,
J.
,
2016
, “
Effects of Piston Bowl Geometry on Reactivity Controlled Compression Ignition Heat Transfer and Combustion Losses at Different Engine Loads
,”
Energy
,
98
, pp.
64
77
.
21.
Bapu
,
B. R. R.
,
Saravanakumar
,
L.
, and
Prasad
,
B. D.
,
2017
, “
Effects of Combustion Chamber Geometry on Combustion Characteristics of a DI Diesel Engine Fueled With Calophyllum Inophyllum Methyl Ester
,”
J. Energy Inst.
,
90
(
1
), pp.
82
100
.
22.
Park
,
S.
,
2012
, “
Optimization of Combustion Chamber Geometry and Engine Operating Conditions for Compression Ignition Engines Fueled With Dimethyl Ether
,”
Fuel
,
97
, pp.
61
71
.
23.
Yadollahi
,
B.
, and
Boroomand
,
M.
,
2013
, “
The Effect of Combustion Chamber Geometry on Injection and Mixture Preparation in a CNG Direct Injection SI Engine
,”
Fuel
,
107
, pp.
52
62
.
24.
Li
,
J.
,
Yang
,
W. M.
,
An
,
H.
,
Maghbouli
,
A.
, and
Chou
,
S. K.
,
2014
, “
Effects of Piston Bowl Geometry on Combustion and Emission Characteristics of Biodiesel Fueled Diesel Engines
,”
Fuel
,
120
, pp.
66
73
.
25.
Taghavifar
,
H.
,
Jafarmadar
,
S.
,
Taghavifar
,
H.
, and
Navid
,
A.
,
2016
, “
Application of DoE Evaluation to Introduce the Optimum Injection Strategy-Chamber Geometry of Diesel Engine Using Surrogate Epsilon-SVR
,”
Appl. Therm. Eng.
,
106
, pp.
56
66
.
26.
Wu
,
C.
,
Deng
,
K.
, and
Wang
,
Z.
,
2016
, “
The Effect of Combustion Chamber Shape on Cylinder Flow and Lean Combustion Process in a Large Bore Spark-Ignition CNG Engine
,”
J. Energy Inst.
,
89
(
2
), pp.
240
247
.
27.
Fridriksson
,
H.
,
Tuner
,
M.
,
Andersson
,
O.
,
Sunden
,
B.
,
Persson
,
H.
, and
Ljungqvist
,
M.
,
2014
, “
Effect of Piston Bowl Shape and Swirl Ratio on Engine Heat Transfer in a Light-Duty Diesel Engine
,”
SAE
Technical Paper No. 2014-01-1141.
28.
Rajamani
,
V.
,
Schoenfeld
,
S.
, and
Dhongde
,
A.
,
2012
, “
Parametric Analysis of Piston Bowl Geometry and Injection Nozzle Configuration Using 3D CFD and DoE
,”
SAE
Technical Paper No. 2012-01-0700.
You do not currently have access to this content.