This research presents a mechanistic analysis of expanding-solvent steam-assisted gravity drainage (ES-SAGD) for heterogeneous reservoirs in terms of cumulative steam-oil ratio (SOR) as a function of cumulative bitumen production. Simulation case studies for SAGD and ES-SAGD with normal hexane at 35 bars are conducted for geostatistical realizations of two types of heterogeneous Athabasca-bitumen reservoirs. For the first type, low-permeability mudstone barriers are oriented horizontally. For the second type, they are inclined and more representative of the middle McMurray member. The solubility of water in the oleic phase at elevated temperatures is properly modeled to ensure reliable comparison between steam-assisted gravity drainage (SAGD) and ES-SAGD. Simulation results show that ES-SAGD is less sensitive to heterogeneity than SAGD in terms of cumulative SOR. On average, the reduction in SOR due to steam-solvent coinjection is simulated to be greater under heterogeneity. The reduction in SOR is greater for reservoir models with inclined mudstone barriers than in those with horizontal mudstone barriers. Analysis of simulation results indicates that the injected solvent tends to accumulate more significantly under heterogeneity, which enhances the mechanisms of ES-SAGD, such as dilution of bitumen by solvent and reduced thermal losses to the overburden. Tortuous hydraulic paths and slower gravity drainage under heterogeneity enhance the mixing between solvent and bitumen in the transverse direction along the edge of a steam chamber. Then, a larger amount of the accumulated solvent tends to facilitate lower temperatures near the chamber edge.

References

1.
Keshavarz
,
M.
,
Okuno
,
R.
, and
Babadagli
,
T.
,
2014
, “
Efficient Oil Displacement Near the Chamber Edge in ES-SAGD
,”
J. Pet. Sci. Eng.
,
118
, pp.
99
113
.
2.
Rui
,
Z.
,
Wang
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
3.
Zhou
,
X.
,
Yuan
,
Q.
,
Peng
,
X.
,
Zeng
,
F.
, and
Zhang
,
L.
,
2018
, “
A Critical Review of the CO2 Huff ‘N’ Puff Process for Enhanced Heavy Oil Recovery
,”
Fuel
,
215
, pp.
813
824
.
4.
Ma
,
Z.
,
Leung
,
J. Y.
, and
Zanon
,
S.
,
2017
, “
Practical Data Mining and Artificial Neural Network Modeling for Steam-Assisted Gravity Drainage Production Analysis
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032909
.
5.
Butler
,
R.
,
2001
, “
Some Recent Developments in SAGD
,”
J. Can. Pet. Technol.
,
40
(
1
), pp.
18
22
.
6.
Yang
,
G.
, and
Butler
,
R. M.
,
1992
, “
Effects of Reservoir Heterogeneities on Heavy Oil Recovery by Steam-Assisted Gravity Drainage
,”
J. Can. Pet. Technol.
,
31
(
8
), pp.
37
43
.
7.
Chen
,
Q.
,
Gerritsen
,
M. G.
, and
Kovscek
,
A. R.
,
2008
, “
Effects of Reservoir Heterogeneities on the Steam-Assisted Gravity-Drainage Process
,”
SPE Reservoir Eval. Eng.
,
11
(
5
), pp.
921
932
.
8.
Yazdi
,
M. M.
, and
Jensen
,
J. L.
,
2014
, “
Fast Screening of Geostatistical Realizations for SAGD Reservoir Simulation
,”
J. Pet. Sci. Eng.
,
124
, pp.
264
274
.
9.
Wang
,
C.
, and
Leung
,
J.
,
2015
, “
Characterizing the Effects of Lean Zones and Shale Distribution in Steam-Assisted-Gravity-Drainage Recovery Performance
,”
SPE Reservoir Eval. Eng.
,
18
(
3
), pp.
329
345
.
10.
Nasr
,
T. N.
,
Beaulieu
,
G.
,
Golbeck
,
H.
, and
Heck
,
G.
,
2003
, “
Novel Expanding Solvent-SAGD Process “ES-SAGD
,”
J. Can. Pet. Technol.
,
42
(
1
), pp.
13
16
.https://www.onepetro.org/journal-paper/PETSOC-03-01-TN
11.
Li
,
W.
,
Mamora
,
D.
, and
Li
,
Y.
,
2011
, “
Light-and Heavy-Solvent Impacts on Solvent-Aided-SAGD Process: A Low-Pressure Experimental Study
,”
J. Can. Pet. Technol.
,
50
(
4
), pp.
19
30
.
12.
Li
,
W.
,
Mamora
,
D.
, and
Li
,
Y.
,
2011
, “
Numerical Investigation of Potential Injection Strategies to Reduce Shale Barrier Impacts on SAGD Process
,”
J. Can. Pet. Technol.
,
50
(
3
), pp.
57
64
.
13.
Jha
,
R. K.
,
Kumar
,
M.
,
Benson
,
I.
, and
Hanzlik
,
E.
,
2013
, “
New Insights Into Steam/Solvent- Coinjection-Process Mechanism
,”
SPE J.
,
18
(
5
), pp.
867
877
.
14.
Keshavarz
,
M.
,
Okuno
,
R.
, and
Babadagli
,
T.
,
2015
, “
Optimal Application Conditions for Steam/Solvent Coinjection
,”
SPE Reservoir Eval. Eng.
,
18
(
1
), pp.
20
38
.
15.
Khaledi
,
R.
,
Boone
,
T. J.
,
Motahhari
,
H. R.
, and
Subramanian
,
G.
,
2015
, “
Optimized Solvent for Solvent Assisted-Steam Assisted Gravity Drainage (SA-SAGD) Recovery Process
,”
SPE Heavy Oil Technical Conference
, Paper No. SPE 174429-MS.
16.
Venkatramani
,
A.
, and
Okuno
,
R.
,
2017
, “
Compositional Mechanisms in Steam-Assisted Gravity Drainage and Expanding-Solvent Steam-Assisted Gravity Drainage With Consideration of Water Solubility in Oil
,”
SPE Reservoir Eval. Eng.
,
20
(
3
), pp.
681
697
.
17.
Li
,
W.
, and
Mamora
,
D.
,
2010
, “
Drainage Mechanism of Steam With Solvent Coinjection Under Steam Assisted Gravity Drainage (SAGD) Process
,”
CPS/SPE International Oil and Gas Conference and Exhibition in China
, Beijing, China, June 8–10, SPE Paper No.
SPE 130802-MS
.
18.
Faradonbeh
,
M. R.
,
Harding
,
G.
, and
Abedi
,
J.
,
2017
, “
Semianalytical Modeling of Steam/Solvent Gravity Drainage of Heavy Oil and Bitumen: Unsteady-State Model With Curved Interface
,”
SPE Reservoir Eval. Eng.
,
20
(
1
), pp.
134
148
.
19.
Naderi
,
K.
, and
Babadagli
,
T.
,
2016
, “
Solvent Selection Criteria and Optimal Application Conditions for Heavy-Oil/Bitumen Recovery at Elevated Temperature: A Review and Comparative Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012904
.
20.
Amani
,
M. J.
,
Gray
,
M. R.
, and
Shaw
,
J. M.
,
2013
, “
Phase Behavior of Athabasca Bitumen Water Mixtures at High Temperature and Pressure
,”
J. Supercritical Fluids
,
77
, pp.
142
152
.
21.
Amani
,
M. J.
,
Gray
,
M. R.
, and
Shaw
,
J. M.
,
2013
, “
Volume of Mixing and Solubility of Water in Athabasca Bitumen at High Temperature and Pressure
,”
Fluid Phase Equilib.
,
358
, pp.
203
211
.
22.
Brunner
,
E.
,
1990
, “
Fluid Mixtures at High Pressures IX. Phase Separation and Critical Phenomena in 23 (n-Alkane + Water) Mixtures
,”
J. Chem. Thermodyn.
,
22
(
4
), pp.
335
353
.
23.
Brunner
,
E.
,
Thies
,
M. C.
, and
Schneider
,
G. M.
,
2006
, “
Fluid Mixtures at High Pressures: Phase Behavior and Critical Phenomena for Binary Mixtures of Water With Aromatic Hydrocarbons
,”
J. Supercritical Fluids
,
39
(
2
), pp.
160
173
.
24.
Sheng
,
K.
,
Okuno
,
R.
, and
Wang
,
M.
,
2017
, “
Water-Soluble Solvent as an Additive to Steam for Improved SAGD
,”
Heavy Oil Technical Conference
, Calgary, AB, Canada, Feb. 15–16, SPE Paper No.
SPE 184983-MS
.
25.
Mohebati
,
M. H.
,
Maini
,
B. B.
, and
Harding
,
T. G.
,
2012
, “
Numerical-Simulation Investigation of the Effect of Heavy-Oil Viscosity on the Performance of Hydrocarbon Additives in SAGD
,”
SPE Reservoir Eval. Eng.
,
15
(
2
), pp.
165
181
.
26.
Ji
,
D.
,
Dong
,
M.
, and
Chen
,
Z.
,
2015
, “
Analysis of Steam–Solvent–Bitumen Phase Behavior and Solvent Mass Transfer for Improving the Performance of the ES-SAGD Process
,”
J. Pet. Sci. Eng.
,
133
, pp.
826
837
.
27.
Adepoju
,
O. O.
,
Lake
,
L. W.
, and
Johns
,
R. T.
,
2013
, “
Investigation of Anisotropic Mixing in Miscible Displacements
,”
SPE Reservoir Eval. Eng.
,
16
(
1
), pp.
85
96
.
28.
Adepoju
,
O. O.
,
Lake
,
L. W.
, and
Johns
,
R. T.
,
2015
, “
Anisotropic Dispersion and Upscaling for Miscible Displacement
,”
SPE J.
,
20
(
3
), pp.
421
432
.
29.
Connolly
,
M.
, and
Johns
,
R. T.
,
2016
, “
Scale-Dependent Mixing for Adverse Mobility Ratio Flows in Heterogeneous Porous Media
,”
Transp. Porous Media
,
113
(
1
), pp.
29
50
.
30.
Computer Modeling Group
,
2011
,
STARS Version 2011-16 User Guide
,
CMG
,
Calgary, AB, Canada
.
31.
Remy
,
N.
,
2005
, “
S-GeMS: The Stanford Geostatistical Modeling Software: A Tool for New Algorithms Development
,”
Geostatistics Banff
,
Springer
,
Dordrecht, The Netherlands
, pp.
865
871
.
32.
Deutsch
,
C. V.
,
2010
, “
Estimation of Vertical Permeability in the McMurray Formation
,”
J. Can. Pet. Technol.
,
49
(
12
), pp.
10
18
.
33.
Garmeh
,
G.
,
2010
, “
Investigation of Scale Dependent Dispersivity and Its Impact on Upscaling Miscible Displacements
,” Ph.D. thesis, The University of Texas at Austin, Austin, TX.
34.
Garmeh
,
G.
, and
Johns
,
R. T.
,
2010
, “
Upscaling of Miscible Floods in Heterogeneous Reservoirs Considering Reservoir Mixing
,”
SPE Reservoir Eval. Eng.
,
13
(
5
), pp.
747
764
.
35.
Venkatramani
,
A.
,
2017
, “
Steam-Solvent Coinjection for Bitumen Recovery Under Reservoir Heterogeneity With Consideration of Water Solubility in Oil
,”
Ph.D. thesis
, The University of Alberta, Edmonton, AB, Canada.https://era.library.ualberta.ca/items/843e6b0c-7ee0-41d0-9d12-dbed50a550b8
36.
Lake
,
L. W.
, and
Hirasaki
,
G. J.
,
1981
, “
Taylor's Dispersion in Stratified Porous Media
,”
SPE J.
,
21
(
4
), pp.
459
468
.
37.
Gelhar
,
L. W.
,
Welty
,
C.
, and
Rehfeldt
,
K. R.
,
1992
, “
A Critical Review of Data on Field‐Scale Dispersion in Aquifers
,”
Water Resour. Res.
,
28
(
7
), pp.
1955
1974
.
38.
Grane
,
F. E.
, and
Gardner
,
G. H. F.
,
1961
, “
Measurements of Transverse Dispersion in Granular Media
,”
J. Chem. Eng. Data
,
6
(
2
), pp.
283
287
.
39.
Alkindi
,
A. S.
,
Al-Wahaibi
,
Y. M.
, and
Muggeridge
,
A. H.
,
2011
, “
Experimental and Numerical Investigations Into Oil Drainage Rates During Vapor Extraction of Heavy Oils
,”
SPE J.
,
16
(
2
), pp.
343
357
.
40.
Kumar
,
A.
,
2016
, “
Characterization of Reservoir Fluids Based on Perturbation From n-Alkanes
,”
Ph.D. thesis
, The University of Alberta, Edmonton, AB, Canada.https://era.library.ualberta.ca/items/5152b763-2cad-46c2-885a-7b57c8e12980
41.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.
42.
Robinson
,
D. B.
, and
Peng
,
D. Y.
,
1978
, “
The Characterization of the Heptanes and Heavier Fractions for the GPA Peng-Robinson Programs
,” Gas Processors Association Research, Tulsa, OK, Report No. RR-28.
43.
Kumar
,
A.
, and
Okuno
,
R.
,
2015
, “
Direct Perturbation of the Peng-Robinson Attraction and Covolume Parameters for Reservoir Fluid Characterization
,”
Chem. Eng. Sci.
,
127
, pp.
293
309
.
44.
Venkatramani
,
A.
, and
Okuno
,
R.
,
2015
, “
Characterization of Water Containing Oil Using an EOS for Steam Injection Processes
,”
J. Natural Gas Sci. Eng.
,
26
, pp.
1091
1106
.
45.
Coats
,
K. H.
, and
Smith
,
B. D.
,
1964
, “
Dead-End Pore Volume and Dispersion in Porous Media
,”
SPE J.
,
4
(
1
), pp.
73
84
.
46.
Dai
,
K. K.
, and
Orr
,
F. M.
, Jr
,
1987
, “
Prediction of CO2 Flood Performance: Interaction of Phase Behavior With Microscopic Pore Structure Heterogeneity
,”
SPE Reservoir Eng.
,
2
(
4
), pp.
531
542
.
47.
Zhang
,
B.
, and
Okuno
,
R.
,
2015
, “
Modeling of Capacitance Flow Behavior in EOS Compositional Simulation
,”
J. Pet. Sci. Eng.
,
131
, pp.
96
113
.
48.
Musial
,
G.
,
Labourdette
,
R.
,
Franco
,
J.
, and
Reynaud
,
J. Y.
,
2013
, “
Modeling of a Tide-Influenced Point-Bar Heterogeneity Distribution and Impacts on Steam-Assisted Gravity Drainage Production: Example From Steepbank River, McMurray Formation, Canada
,”
AAPG Stud. Geol.
,
64
, pp.
545
564
.http://archives.datapages.com/data/specpubs/study64/CHAPTER18/CHAPTER18.HTM
49.
Zhou
,
X.
,
Zeng
,
F.
, and
Zhang
,
L.
,
2016
, “
Improving Steam-Assisted Gravity Drainage Performance in Oil Sands With a Top Water Zone Using Polymer Injection and the Fishbone Well Pattern
,”
Fuel
,
184
, pp.
449
465
.
50.
Venkatramani
,
A.
, and
Okuno
,
R.
,
2017
, “
Steam-Solvent Coinjection Under Reservoir Heterogeneity: Should ES-SAGD Be Impelemented for Highly Heterogeneous Reservoirs?
,”
SPE Heavy Oil Technical Conference
, Calgary, AB, Canada, Feb. 15–16, SPE Paper No.
SPE 185001-MS
.
You do not currently have access to this content.