Supercritical water gasification (SCWG) is an efficient and clean conversion of biomass due to the unique chemical and physical properties. Anthracene and furfural are the key intermediates in SCWG, and their microscopic reaction mechanism in supercritical water may provide information for reactor optimization and selection of optimal operating condition. Density functional theory (DFT) and reactive empirical force fields (ReaxFF) were combined to investigate the molecular dynamics of catalytic gasification of anthracene and furfural. The simulation results showed that Cu and Ni obviously increased the production of H radicals, therefore the substance SCWG process. Ni catalyst decreased the production of H2 with the residence time of 500 ps while significantly increased CO production and finally increased the syngas production. Ni catalyst was proved to decrease the free carbon production to prohibit the carbon deposition on the surface of active sites; meanwhile, Cu catalyst increased the production of free carbon.

References

1.
Chang
,
J.
,
Leung
,
D. Y.
,
Wu
,
C.
, and
Yuan
,
Z.
,
2003
, “
A Review on the Energy Production, Consumption, and Prospect of Renewable Energy in China
,”
Renewable Sustainable Energy Rev.
,
7
(
5
), pp.
453
468
.
2.
Omer
,
A. M.
,
2002
, “
Energy Supply Potentials and Needs, and the Environmental Impact of Their Use in Sudan
,”
Environmentalist
,
22
(
4
), pp.
353
365
.
3.
Zhao
,
C.
,
Qiao
,
X.
,
Cao
,
Y.
, and
Shao
,
Q.
,
2017
, “
Application of Hydrogen Peroxide Presoaking Prior to Ammonia Fiber Expansion Pretreatment of Energy Crops
,”
Fuel
,
205
, pp.
184
191
.
4.
Guell
,
B. M.
,
Sandquist
,
J.
, and
Sorum
,
L.
,
2013
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
5.
Huang
,
X.
,
Chen
,
X.
,
Shuai
,
Y.
,
Yuan
,
Y.
,
Zhang
,
T.
,
Li
,
B.
, and
Tan
,
H.
,
2015
, “
Heat Transfer Analysis of Solar-Thermal Dissociation of NiFe2O4 by Coupling MCRTM and FVM Method
,”
Energy Conversion Manage.
,
106
, pp.
676
686
.
6.
Fuqiang
,
W.
,
Jianyu
,
T.
,
Lanxin
,
M.
,
Yong
,
S.
,
Heping
,
T.
, and
Yu
,
L.
,
2014
, “
Thermal Performance Analysis of Porous Medium Solar Receiver With Quartz Window to Minimize Heat Flux Gradient
,”
Sol. Energy
,
108
, pp.
348
359
.
7.
Zhao
,
C.
,
Shao
,
Q.
,
Ma
,
Z.
,
Li
,
B.
, and
Zhao
,
X.
,
2016
, “
Physical and Chemical Characterizations of Corn Stalk Resulting From Hydrogen Peroxide Presoaking Prior to Ammonia Fiber Expansion Pretreatment
,”
Ind. Crops Prod.
,
83
, pp.
86
93
.
8.
Reddy
,
K. S. K.
,
Kannan
,
P.
,
Al Shoaibi
,
A.
, and
Srinivasakannan
,
C.
,
2012
, “
Thermal Pyrolysis of Polyethylene in Fluidized Beds: Review of the Influence of Process Parameters on Product Distribution
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p. 034001.
9.
Jin
,
H.
,
Guo
,
L.
,
Guo
,
J.
,
Ge
,
Z.
,
Cao
,
C.
, and
Lu
,
Y.
,
2015
, “
Study on Gasification Kinetics of Hydrogen Production From Lignite in Supercritical Water
,”
Int. J. Hydrogen Energy
,
40
(
24
), pp.
7523
7529
.
10.
Jin
,
H.
,
Lu
,
Y.
,
Liao
,
B.
,
Guo
,
L.
, and
Zhang
,
X.
,
2010
, “
Hydrogen Production by Coal Gasification in Supercritical Water With a Fluidized Bed Reactor
,”
Int. J. Hydrogen Energy
,
35
(
13
), pp.
7151
7160
.
11.
Cao
,
C.
,
Xu
,
L.
,
He
,
Y.
,
Guo
,
L.
,
Jin
,
H.
, and
Huo
,
Z.
,
2017
, “
High-Efficiency Gasification of Wheat Straw Black Liquor in Supercritical Water at High Temperatures for Hydrogen Production
,”
Energy Fuels
,
31
(
4
), pp.
3970
3978
.
12.
Cao
,
W.
,
Cao
,
C.
,
Guo
,
L.
,
Jin
,
H.
,
Dargusch
,
M.
,
Bernhardt
,
D.
, and
Yao
,
X.
,
2016
, “
Hydrogen Production From Supercritical Water Gasification of Chicken Manure
,”
Int. J. Hydrogen Energy
,
41
(
48
), pp.
22722
22731
.
13.
Jin
,
H.
,
Zhao
,
X.
,
Guo
,
L.
,
Zhu
,
C.
,
Cao
,
C.
, and
Wu
,
Z.
,
2017
, “
Experimental Investigation on Methanation Reaction Based on Coal Gasification in Supercritical Water
,”
Int. J. Hydrogen Energy
,
42
(
7
), pp.
4636
4641
.
14.
Jin
,
H.
,
Liu
,
S.
,
Wei
,
W.
,
Zhang
,
D.
,
Cheng
,
Z.
, and
Guo
,
L.
,
2015
, “
Experimental Investigation on Hydrogen Production by Anthracene Gasification in Supercritical Water
,”
Energy Fuels
,
29
(
10
), pp.
6342
6346
.
15.
Jin
,
H.
,
Chen
,
Y.
,
Ge
,
Z.
,
Liu
,
S.
,
Ren
,
C.
, and
Guo
,
L.
,
2015
, “
Hydrogen Production by Zhundong Coal Gasification in Supercritical Water
,”
Int. J. Hydrogen Energy
,
40
(
46
), pp.
16096
16103
.
16.
Jin
,
H.
,
Wu
,
Y.
,
Guo
,
L.
, and
Su
,
X.
,
2016
, “
Molecular Dynamic Investigation on Hydrogen Production by Polycyclic Aromatic Hydrocarbon Gasification in Supercritical Water
,”
Int. J. Hydrogen Energy
,
41
(
6
), pp.
3837
3843
.
17.
Virmond
,
E.
,
Schacker
,
R. L.
,
Albrecht
,
W.
,
Althoff
,
C. A.
,
de Souza
,
M.
,
Moreira
,
R. F. P. M.
, and
Jose
,
H. J.
,
2010
, “
Combustion of Apple Juice Wastes in a Cyclone Combustor for Thermal Energy Generation (ES2009-90152)
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
041401
.
18.
Jin
,
H.
,
Zhao
,
X.
,
Wu
,
Z.
,
Cao
,
C.
, and
Guo
,
L.
,
2016
, “
Supercritical Water Synthesis of Nano-Particle Catalyst on TiO2 and Its Application in Supercritical Water Gasification of Biomass
,”
J. Exp. Nanosci.
,
12
(
1
), pp.
72
82
.
19.
Jin
,
H.
,
Zhao
,
X.
,
Su
,
X.
,
Zhu
,
C.
,
Cao
,
C.
, and
Guo
,
L.
,
2017
, “
Supercritical Water Synthesis of Bimetallic Catalyst and Its Application in Hydrogen Production by Furfural Gasification in Supercritical Water
,”
Int. J. Hydrogen Energy
,
42
(
8
), pp.
4943
4950
.
20.
Agirrezabal-Telleria
,
I.
,
Requies
,
J.
,
Gueemez
,
M. B.
, and
Arias
,
P. L.
,
2014
, “
Dehydration of D-Xylose to Furfural Using Selective and Hydrothermally Stable Arenesulfonic SBA-15 Catalysts
,”
Appl. Catal., B
,
145
, pp.
34
42
.
21.
Hao
,
X.
,
Guo
,
L.
,
Zhang
,
X.
, and
Guan
,
Y.
,
2005
, “
Hydrogen Production From Catalytic Gasification of Cellulose in Supercritical Water
,”
Chem. Eng. J.
,
110
(
1–3
), pp.
57
65
.
22.
Jin
,
H.
,
Lu
,
Y.
,
Guo
,
L.
,
Cao
,
C.
, and
Zhang
,
X.
,
2010
, “
Hydrogen Production by Partial Oxidative Gasification of Biomass and Its Model Compounds in Supercritical Water
,”
Int. J. Hydrogen Energy
,
35
(
7
), pp.
3001
3010
.
23.
Lu
,
Y.
,
Guo
,
L.
,
Ji
,
C.
,
Zhang
,
X.
,
Hao
,
X.
, and
Yan
,
Q.
,
2006
, “
Hydrogen Production by Biomass Gasification in Supercritical Water: A Parametric Study
,”
Int. J. Hydrogen Energy
,
31
(
7
), pp.
822
831
.
24.
Lu
,
Y.
,
Li
,
S.
,
Guo
,
L.
, and
Zhang
,
X.
,
2010
, “
Hydrogen Production by Biomass Gasification in Supercritical Water Over Ni/γAl2O3 and Ni/CeO2-γAl2O3 Catalysts
,”
Int. J. Hydrogen Energy
,
35
(
13
), pp.
7161
7168
.
25.
Yanik
,
J.
,
Ebale
,
S.
,
Kruse
,
A.
,
Saglam
,
M.
, and
Yüksel
,
M.
,
2008
, “
Biomass Gasification in Supercritical Water: II. Effect of Catalyst
,”
Int. J. Hydrogen Energy
,
33
(
17
), pp.
4520
4526
.
26.
Sitthisa
,
S.
, and
Resasco
,
D. E.
,
2011
, “
Hydrodeoxygenation of Furfural Over Supported Metal Catalysts: A Comparative Study of Cu, Pd and Ni
,”
Catal. Lett.
,
141
(
6
), pp.
784
791
.
27.
May
,
A.
,
Salvadó
,
J.
,
Torras
,
C.
, and
Montané
,
D.
,
2010
, “
Catalytic Gasification of Glycerol in Supercritical Water
,”
Chem. Eng. J.
,
160
(
2
), pp.
751
759
.
28.
Lee
,
I.-G.
, and
Ihm
,
S.-K.
,
2008
, “
Catalytic Gasification of Glucose Over Ni/Activated Charcoal in Supercritical Water
,”
Ind. Eng. Chem. Res.
,
48
(
3
), pp.
1435
1442
.
29.
Zhang
,
J.
,
Weng
,
X.
,
Han
,
Y.
,
Li
,
W.
,
Cheng
,
J.
,
Gan
,
Z.
, and
Gu
,
J.
,
2013
, “
The Effect of Supercritical Water on Coal Pyrolysis and Hydrogen Production: A Combined ReaxFF and DFT Study
,”
Fuel
,
108
, pp.
682
690
.
30.
Zhang
,
J.
,
Gu
,
J.
,
Han
,
Y.
,
Li
,
W.
,
Gan
,
Z.
, and
Gu
,
J.
,
2015
, “
Supercritical Water Oxidation VS Supercritical Water Gasification: Which Process is Better for Explosive Wastewater Treatment?
,”
Ind. Eng. Chem. Res.
,
54
(
4
), pp.
1251
1260
.
31.
Zhang
,
J.
,
Gu
,
J.
,
Han
,
Y.
,
Li
,
W.
,
Gan
,
Z.
, and
Gu
,
J.
,
2015
, “
Analysis of Degradation Mechanism of Disperse Orange 25 in Supercritical Water Oxidation Using Molecular Dynamic Simulations Based on the Reactive Force Field
,”
J. Mod. Model.
,
21
(
3
), pp.
1
13
.
32.
Zhang
,
X.
,
Bao
,
H.
, and
Hu
,
M.
,
2015
, “
Bilateral Substrate Effect on the Thermal Conductivity of Two-Dimensional Silicon
,”
Nanoscale
,
7
(
14
), pp.
6014
6022
.
33.
Elliott
,
D. C.
,
Sealock
,
L. J.
, Jr.
, and
Baker
,
E. G.
,
1993
, “
Chemical Processing in High-Pressure Aqueous Environments. 2. Development of Catalysts for Gasification
,”
Ind. Eng. Chem. Res.
,
32
(
8
), pp.
1542
1548
.
34.
Minowa
,
T.
, and
Inoue
,
S.
,
1999
, “
Hydrogen Production From Biomass by Catalytic Gasification in Hot Compressed Water
,”
Renewable Energy
,
16
(
1
), pp.
1114
1117
.
35.
Yamaguchi
,
A.
,
Hiyoshi
,
N.
,
Sato
,
O.
,
Bando
,
K. K.
,
Osada
,
M.
, and
Shirai
,
M.
,
2009
, “
Hydrogen Production From Woody Biomass Over Supported Metal Catalysts in Supercritical Water
,”
Catal. Today
,
146
(
1
), pp.
192
195
.
36.
Lin
,
Y.-H.
,
Wei
,
T.-T.
,
Yang
,
M.-H.
, and
Lee
,
S.-L.
,
2013
, “
Postconsumer Plastic Waste Over Post-Use Cracking Catalysts for Producing Hydrocarbon Fuels
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
011701
.
37.
Minowa
,
T.
, and
Ogi
,
T.
,
1998
, “
Hydrogen Production From Cellulose Using a Reduced Nickel Catalyst
,”
Catal. Today
,
45
(
1
), pp.
411
416
.
38.
Minowa
,
T.
,
Zhen
,
F.
, and
Ogi
,
T.
,
1998
, “
Cellulose Decomposition in Hot-Compressed Water With Alkali or Nickel Catalyst
,”
J. Supercrit. Fluids
,
13
(
1–3
), pp.
253
259
.
39.
Jin
,
H.
,
Wu
,
Y.
,
Zhu
,
C.
,
Guo
,
L.
, and
Huang
,
J.
,
2016
, “
Molecular Dynamic Investigation on Hydrogen Production by Furfural Gasification in Supercritical Water
,”
Int. J. Hydrogen Energy
,
41
(
36
), pp.
16064
16069
.
40.
Van Duin
,
A. C.
,
Dasgupta
,
S.
,
Lorant
,
F.
, and
Goddard
,
W. A.
,
2001
, “
ReaxFF: A Reactive Force Field for Hydrocarbons
,”
J. Phys. Chem. A
,
105
(
41
), pp.
9396
9409
.
41.
Chenoweth
,
K.
,
Van Duin
,
A. C.
, and
Goddard
,
W. A.
,
2008
, “
ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation
,”
J. Phys. Chem. A
,
112
(
5
), pp.
1040
1053
.
42.
Wang
,
H.
,
Feng
,
Y.
,
Zhang
,
X.
,
Lin
,
W.
, and
Zhao
,
Y.
,
2015
, “
Study of Coal Hydropyrolysis and Desulfurization by ReaxFF Molecular Dynamics Simulation
,”
Fuel
,
145
, pp.
241
248
.
43.
Chen
,
B.
,
Wei
,
X.-Y.
,
Yang
,
Z.-S.
,
Liu
,
C.
,
Fan
,
X.
,
Qing
,
Y.
, and
Zong
,
Z.-M.
,
2012
, “
ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Lignite Depolymerization in Supercritical Methanol With Lignite-Related Model Compounds
,”
Energy Fuels
,
26
(
2
), pp.
984
989
.
44.
Mueller
,
J. E.
,
van Duin
,
A. C.
, and
Goddard
,
W. A.
, III
,
2010
, “
Application of the ReaxFF Reactive Force Field to Reactive Dynamics of Hydrocarbon Chemisorption and Decomposition
,”
J. Phys. Chem. C
,
114
(
12
), pp.
5675
5685
.
45.
Nielson
,
K. D.
,
van Duin
,
A. C.
,
Oxgaard
,
J.
,
Deng
,
W.-Q.
, and
Goddard
,
W. A.
,
2005
, “
Development of the ReaxFF Reactive Force Field for Describing Transition Metal Catalyzed Reactions, With Application to the Initial Stages of the Catalytic Formation of Carbon Nanotubes
,”
J. Phys. Chem. A
,
109
(
3
), pp.
493
499
.
46.
Mueller
,
J. E.
,
van Duin
,
A. C.
, and
Goddard
,
W. A.
, III
,
2010
, “
Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel
,”
J. Phys. Chem. C
,
114
(
11
), pp.
4939
4949
.
47.
Salmon
,
E.
,
van Duin
,
A. C.
,
Lorant
,
F.
,
Marquaire
,
P.-M.
, and
Goddard
,
W. A.
,
2009
, “
Thermal Decomposition Process in Algaenan of Botryococcus Braunii Race L. Part 2: Molecular Dynamics Simulations Using the ReaxFF Reactive Force Field
,”
Org. Geochem.
,
40
(
3
), pp.
416
427
.
48.
Leininger
,
J.-P.
,
Minot
,
C.
, and
Lorant
,
F.
,
2008
, “
Two Theoretical Simulations of Hydrocarbons Thermal Cracking: Reactive Force Field and Density Functional Calculations
,”
J. Mol. Struct., THEOCHEM
,
852
(
1
), pp.
62
70
.
49.
Salmon
,
E.
,
van Duin
,
A. C.
,
Lorant
,
F.
,
Marquaire
,
P.-M.
, and
Goddard
,
W. A.
,
2009
, “
Early Maturation Processes in Coal. Part 2: Reactive Dynamics Simulations Using the ReaxFF Reactive Force Field on Morwell Brown Coal Structures
,”
Org. Geochem.
,
40
(
12
), pp.
1195
1209
.
50.
Li
,
Y.
,
Guo
,
L.
,
Zhang
,
X.
,
Jin
,
H.
, and
Lu
,
Y.
,
2010
, “
Hydrogen Production From Coal Gasification in Supercritical Water With a Continuous Flowing System
,”
Int. J. Hydrogen Energy
,
35
(
7
), pp.
3036
3045
.
51.
Ekweribe
,
C.
, and
Civan
,
F.
,
2011
, “
Transient Wax Gel Formation Model for Shut-In Subsea Pipelines
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
033001
.
You do not currently have access to this content.