Biomass is a promising alternative energy source for fossil fuel with the advantages of abundance, renewability, environmental friendliness, etc. This makes the development of biomass technology be of great potential and interesting. The experiments of biomass fast pyrolysis were performed in a microquartz reactor for rice husk (RH), corn stalk (CS) and birch wood (BW), and scanning electron microscope (SEM), energy dispersive spectrometer, and Raman microscope were then applied to analyze the collected chars. The average char yields of RH, CS, and BW pyrolyzed at 800 °C were 29.64%, 18.67%, and 8.64%, respectively. The morphological structures of RH and CS were mainly reserved in chars, while the raw surface textures of BW disappeared during the fast pyrolysis. The silicon concentrations in RH char and CS char were much higher than BW char, and the graphitization degree of CS char was the lowest among the three biomass chars.

References

1.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C.
, and
Levendis
,
Y. A.
,
2014
, “
Pyrolytic Conversion of Biomass Residue to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021101
.
2.
Lin
,
Y.
,
Wei
,
T.
,
Yang
,
M.
, and
Lee
,
S.
,
2012
, “
Postconsumer Plastic Waste Over Post-Use Cracking Catalysts for Producing Hydrocarbon Fuels
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
011701
.
3.
Kreitzberg
,
T.
,
Haustein
,
H. D.
,
Gövert
,
B.
, and
Kneer
,
R.
,
2016
, “
Investigation of Gasification Reaction of Pulverized Char Under N2/CO2 Atmosphere in a Small-Scale Fluidized Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042207
.
4.
Yang
,
L.
,
Ran
,
J.
, and
Zhang
,
L.
,
2011
, “
Mechanism and Kinetics of Pyrolysis of Coal With High Ash and Low Fixed Carbon Contents
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031701
.
5.
Güell
,
M. B.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2012
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
6.
Luo
,
C.
,
Watanabe
,
T.
,
Nakamura
,
M.
,
Uemiya
,
S.
, and
Kojima
,
T.
,
2000
, “
Gasification Kinetics of Coal Chars Carbonized Under Rapid and Slow Heating Conditions at Elevated Temperatures
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
21
26
.
7.
Tang
,
Y.
,
Ma
,
X.
,
Lai
,
Z.
,
Lin
,
H.
, and
Wu
,
J.
,
2013
, “
Char Characteristics of Municipal Solid Waste Prepared Under N2 and CO2 Atmospheres
,”
J. Anal. Appl. Pyrolysis
,
101
, pp.
193
198
.
8.
Di Blasi
,
C.
,
2009
, “
Combustion and Gasification Rates of Lignocellulosic Chars
,”
Prog. Energy Combust. Sci.
,
35
(
2
), pp.
121
140
.
9.
Lahijiani
,
P.
,
Zainal
,
Z. A.
,
Mohammadi
,
M.
, and
Mohamed
,
A. R.
,
2015
, “
Conversion of the Greenhouse Gas CO2 to the Fuel Gas CO Via the Boudouard Reaction: A Review
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
615
632
.
10.
Bouraoui
,
Z.
,
Jeguirim
,
M.
,
Guizani
,
C.
,
Limousy
,
L.
,
Dupont
,
C.
, and
Gadiou
,
R.
,
2015
, “
Thermogravimetric Study on the Influence of Structural, Textural and Chemical Properties of Biomass Chars on CO2 Gasification Reactivity
,”
Energy
,
88
, pp.
703
710
.
11.
Aysu
,
T.
, and
Küçük
,
M. M.
,
2014
, “
Biomass Pyrolysis in a Fixed-Bed Reactor: Effects of Pyrolysis Parameters on Product Yields and Characterization of Products
,”
Energy
,
64
, pp.
1002
1025
.
12.
Fu
,
P.
,
Yi
,
W.
,
Bai
,
X.
,
Li
,
Z.
,
Hu
,
S.
, and
Xiang
,
J.
,
2011
, “
Effect of Temperature on Gas Composition and Char Structural Features of Pyrolyzed Agricultural Residues
,”
Bioresour. Technol.
,
102
(
17
), pp.
8211
8219
.
13.
Fu
,
P.
,
Hu
,
S.
,
Xiang
,
J.
,
Sun
,
L.
,
Su
,
S.
, and
An
,
S.
,
2012
, “
Study on the Gas Evolution and Char Structural Change During Pyrolysis of Cotton Stalk
,”
J. Anal. Appl. Pyrolysis
,
97
, pp.
130
136
.
14.
Kordoghli
,
S.
,
Paraschiv
,
M.
,
Tazerout
,
M.
,
Khiari
,
B.
, and
Zagrouba
,
F.
,
2017
, “
Novel Catalytic Systems for Waste Tires Pyrolysis: Optimization of Gas Fraction
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032203
.
15.
Min
,
F.
,
Zhang
,
M.
,
Zhang
,
Y.
,
Cao
,
Y.
, and
Pan
,
W.
,
2011
, “
An Experimental Investigation Into the Gasification Reactivity and Structure of Agricultural Waste Chars
,”
J. Anal. Appl. Pyrolysis
,
92
(
1
), pp.
250
257
.
16.
Yuan
,
S.
,
Chen
,
X.
,
Li
,
J.
, and
Wang
,
F.
,
2011
, “
CO2 Gasification Kinetics of Biomass Char Derived From High-Temperature Rapid Pyrolysis
,”
Energy Fuels
,
25
(
5
), pp.
2314
2321
.
17.
Morin
,
M.
,
Pécate
,
S.
,
Hémati
,
M.
, and
Kara
,
Y.
,
2016
, “
Pyrolysis of Biomass in a Batch Fluidized Bed Reactor: Effect of the Pyrolysis Conditions and the Nature of the Biomass on the Physicochemical Properties and the Reactivity of Char
,”
J. Anal. Appl. Pyrolysis
,
122
, pp.
511
523
.
18.
Fu
,
P.
,
Hu
,
S.
,
Xiang
,
J.
,
Sun
,
L.
,
Su
,
S.
, and
Wang
,
J.
,
2012
, “
Evaluation of the Porous Structure Development of Chars From Pyrolysis of Rice Straw: Effects of Pyrolysis Temperature and Heating Rate
,”
J. Anal. Appl. Pyrolysis
,
98
, pp.
177
183
.
19.
Scott
,
S. A.
,
Davidson
,
J. F.
,
Dennis
,
J. S.
,
Fennell
,
P. S.
, and
Hayhurst
,
A. N.
,
2005
, “
The Rate of Gasification by CO2 of Chars From Waste
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2151
2159
.
20.
Lu
,
P.
,
Huang
,
Q.
,
Bourtsalas
,
A. C.
,
Chi
,
Y.
, and
Yan
,
J.
,
2017
, “
Experimental Research of Basic Properties and Reactivity of Waste Derived Chars
,”
Appl. Therm. Eng.
,
119
, pp.
639
649
.
21.
Chiodo
,
V.
,
Zafarana
,
G.
,
Maisano
,
S.
,
Freni
,
S.
, and
Urbani
,
F.
,
2016
, “
Pyrolysis of Different Biomass: Direct Comparison Among Posidonia Oceanica, Lacustrine Alga and White-Pine
,”
Fuel
,
164
, pp.
220
227
.
22.
Trubetskaya
,
A.
,
Jensen
,
P. A.
,
Jensen
,
A. D.
,
Steibel
,
M.
,
Spliethoff
,
H.
,
Glarborg
,
P.
, and
Larsen
,
F. H.
,
2016
, “
Comparison of High Temperature Chars of Wheat Straw and Rice Husk With Respect to Chemistry, Morphology and Reactivity
,”
Biomass Bioenergy
,
86
, pp.
76
87
.
23.
Bouraoui
,
Z.
,
Dupont
,
C.
,
Jeguirim
,
M.
, and
Limousy
,
L.
,
2016
, “
CO2 Gasification of Woody Biomass Chars: The Influence of K and Si on Char Reactivity
,”
C. R. Chim.
,
19
(4), pp.
457
465
.
24.
Vassilv
,
S. V.
,
Baxter
,
D.
,
Andersen
,
L. K.
, and
Vassileva
,
C. G.
,
2010
, “
An Overview of the Chemical Composition of Biomass
,”
Fuel
,
89
(
5
), pp.
913
933
.
25.
Asadullah
,
M.
,
Zhang
,
S.
,
Min
,
Z.
,
Yimsiri
,
P.
, and
Li
,
C.
,
2010
, “
Effects of Biomass Char Structure on Its Gasification Reactivity
,”
Bioresour. Technol.
,
101
(
20
), pp.
7935
7943
.
26.
Ferrari
,
A. C.
, and
Roberson
,
J.
,
2000
, “
Interpretation of Raman Spectra of Disordered and Amorphous Carbon
,”
Phys. Rev. B
,
61
(
20
), pp.
14095
14107
.
27.
Okumura
,
Y.
,
Hanaoka
,
T.
, and
Sakanishi
,
K.
,
2009
, “
Effect of Pyrolysis Conditions on Gasification Reactivity of Woody Biomass-Derived Char
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2013
2020
.
You do not currently have access to this content.