A generalized methodology for pinch point design and optimization of subcritical and transcritical organic Rankine cycles (ORCs) using both wet and dry fluids is adopted in this study. The presented algorithm can predict the pinch point location in evaporator and condenser simultaneously and optimize the evaporator pressure for best performance with various heat source and sink conditions. Effects of pinch point temperature difference (PPTD), isentropic efficiency, subcooling, superheating and regenerator on the energy and economic performances are discussed for selected working fluids. System yields similar optimum design for both maximum power generation and minimum capital cost per unit power. At optimum condition, ammonia is best in terms of higher thermal efficiency and lower component size, R152a is best in terms of higher net power output and heat recovery efficiency (11.1%), and toluene is best in terms of lower capital cost and cost per unit power output (7060 $/kW). Effect of heat source and sink parameters on both energy and economic performances is significant. Contour plots are presented to select the best ORC design parameters for available heat source condition. PPTD and expander isentropic efficiency have significant effect on performances. However, the effect of subcooling, superheating and regenerator depends on working fluid.

References

1.
Sarkar
,
J.
, and
Bhattacharyya
,
S.
,
2015
, “
Potential of Organic Rankine Cycle Technology in India: Working Fluid Selection and Feasibility Study
,”
Energy
,
90
(Pt. 2), pp.
1618
1625
.
2.
Boretti
,
A. A.
,
2012
, “
Energy Recovery in Passenger Cars
,”
ASME J. Energy Resour. Technol.
,
134
(2), p.
022203
.
3.
Micheli
,
D.
,
Pinamonti
,
P.
,
Reini
,
M.
, and
Taccani
,
R.
,
2013
, “
Performance Analysis and Working Fluid Optimization of a Cogenerative Organic Rankine Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
135
(2), p.
021601
.
4.
Vidhi
,
R.
,
Kuravi
,
S.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Sabau
,
A. S.
,
2013
, “
Organic Fluids in a Supercritical Rankine Cycle for Low Temperature Power Generation
,”
ASME J. Energy Resour. Technol.
,
135
(4), p.
042002
.
5.
Sarkar
,
J.
,
2015
, “
Review and Future Trends of Supercritical CO2 Rankine Cycle for Low-Grade Heat Conversion
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
434
451
.
6.
Ziviani
,
D.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2014
, “
Design, Analysis and Optimization of a Micro-CHP System Based on Organic Rankine Cycle for Ultralow Grade Thermal Energy Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(1), p.
011602
.
7.
Chen
,
Q.
,
Xu
,
J.
, and
Chen
,
H.
,
2012
, “
A New Design Method for Organic Rankine Cycles With Constraint of Inlet and Outlet Heat Carrier Fluid Temperatures Coupling With the Heat Source
,”
Appl. Energy
,
98
, pp.
562
573
.
8.
Li
,
Y.-R.
,
Wang
,
J.-N.
,
Du
,
M.-T.
,
Wu
,
S.-Y.
,
Liu
,
C.
, and
Xu
,
J.-L.
,
2013
, “
Effect of Pinch Point Temperature Difference on Cost Effective Performance of Organic Rankine Cycle
,”
Int. J. Energy Res.
,
37
(15), pp.
1952
1962
.
9.
Zebian
,
H.
, and
Mitsos
,
A.
,
2012
, “
A Double-Pinch Criterion for Regenerative Rankine Cycles
,”
Energy
,
40
(1), pp.
258
270
.
10.
Wang
,
J.
,
Yan
,
Z.
,
Wang
,
M.
,
Maa
,
S.
, and
Dai
,
Y.
,
2013
, “
Thermodynamic Analysis and Optimization of an (Organic Rankine Cycle) ORC Using Low Grade Heat Source
,”
Energy
,
49
, pp.
356
365
.
11.
Guo
,
C.
,
Du
,
X.
,
Yang
,
L.
, and
Yang
,
Y.
,
2014
, “
Performance Analysis of Organic Rankine Cycle Based on Location of Heat Transfer Pinch Point in Evaporator
,”
Appl. Therm. Eng.
,
62
(1), pp.
176
186
.
12.
Ryms
,
M.
,
Pyś
,
T.
, and
Klugmann-Radziemska
,
E.
,
2014
, “
Adapting the Pinch Point Analysis to Improve the ORC Design Process
,”
Int. J. Energy Res.
,
38
(1), pp.
29
40
.
13.
Liu
,
W.
,
Meinel
,
D.
,
Gleinser
,
M.
,
Wieland
,
C.
, and
Spliethoff
,
H.
,
2015
, “
Optimal Heat Source Temperature for Thermodynamic Optimization of Sub-Critical Organic Rankine Cycles
,”
Energy
,
88
, pp.
897
906
.
14.
Yu
,
H.
,
Feng
,
X.
, and
Wang
,
Y.
,
2015
, “
A New Pinch Based Method for Simultaneous Selection of Working Fluid and Operating Conditions in an ORC (Organic Rankine Cycle) Recovering Waste Heat
,”
Energy
,
90
(Pt. 1), pp.
36
46
.
15.
Yang
,
M.-H.
, and
Yeh
,
R.-H.
,
2016
, “
Economic Performances Optimization of an Organic Rankine Cycle System With Lower Global Warming Potential Working Fluids in Geothermal Application
,”
Renewable Energy
,
85
, pp.
1201
1213
.
16.
Maraver
,
D.
,
Royo
,
J.
,
Lemort
,
V.
, and
Quoilin
,
S.
,
2014
, “
Systematic Optimization of Subcritical and Transcritical Organic Rankine Cycles (ORCs) Constrained by Technical Parameters in Multiple Applications
,”
Appl. Energy
,
117
, pp.
11
29
.
17.
Woodland
,
B. J.
,
Braun
,
J. E.
,
Groll
,
E. A.
, and
Horton
,
W. T.
,
2014
, “
Methods of Increasing Net Work Output of Organic Rankine Cycles for Low-Grade Waste Heat Recovery
,”
International Refrigeration and Air Conditioning Conference
, West Lafayette, IN, July 14–17, Paper No.
104
. http://adsabs.harvard.edu/abs/2015PhDT.......167W
18.
Astolfi
,
M.
,
Xodo
,
L.
,
Romano
,
M. C.
, and
Macchi
,
E.
,
2011
, “
Technical and Economical Analysis of a Solar–Geothermal Hybrid Plant Based on an Organic Rankine Cycle
,”
Geothermics
,
40
(1), pp.
58
68
.
19.
Chen
,
H.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. K.
,
2011
, “
Energetic and Exergetic Analysis of CO2- and R32-Based Transcritical Rankine Cycles for Low-Grade Heat Conversion
,”
Appl. Energy
,
88
(8), pp.
2802
2808
.
20.
Karellas
,
S.
,
Schuster
,
A.
, and
Leontaritis
,
A. D.
,
2012
, “
Influence of Supercritical ORC Parameters on Plate Heat Exchanger Design
,”
Appl. Therm. Eng.
,
33–34
, pp.
70
76
.
21.
Pan
,
L.
,
Wang
,
H.
, and
Shi
,
W.
,
2012
, “
Performance Analysis in Near-Critical Conditions of Organic Rankine Cycle
,”
Energy
,
37
, pp.
281
286
.
22.
Vetter
,
C.
,
Wiemer
,
H.-J.
, and
Kuhn
,
D.
,
2013
, “
Comparison of Sub- and Supercritical Organic Rankine Cycles for Power Generation From Low-Temperature/Low-Enthalpy Geothermal Wells, Considering Specific Net Power Output and Efficiency
,”
Appl. Therm. Eng.
,
51
(1–2), pp.
871
879
.
23.
Xu
,
J.
, and
Liu
,
C.
,
2013
, “
Effect of the Critical Temperature of Organic Fluids on Supercritical Pressure Organic Rankine Cycles
,”
Energy
,
63
, pp.
109
122
.
24.
Le
,
V. L.
,
Feidt
,
M.
,
Kheiri
,
A.
, and
Prayer
,
S. P.
,
2014
, “
Performance Optimization of Low-Temperature Power Generation by Supercritical ORCs (Organic Rankine Cycles) Using Low GWP (Global Warming Potential) Working Fluids
,”
Energy
,
67
, pp.
513
526
.
25.
Dai
,
B.
,
Li
,
M.
, and
Ma
,
Y.
,
2014
, “
Thermodynamic Analysis of Carbon Dioxide Blends With Low GWP (Global Warming Potential) Working Fluids-Based Transcritical Rankine Cycles for Low-Grade Heat Energy Recovery
,”
Energy
,
64
, pp.
942
952
.
26.
Zhu
,
Y.
,
Hu
,
Z.
,
Zhou
,
Y.
,
Jiang
,
L.
, and
Yu
,
L.
,
2015
, “
Discussion of the Internal Heat Exchanger's Effect on the Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
75
, pp.
334
343
.
27.
Wang
,
Y.
,
Ding
,
X.
,
Tang
,
L.
, and
Weng
,
Y.
,
2016
, “
Effect of Evaporation Temperature on the Performance of Organic Rankine Cycle in Near-Critical Condition
,”
ASME J. Energy Resour. Technol.
,
138
(3), p.
032001
.
28.
Xu
,
H.
,
Gao
,
N.
, and
Zhu
,
T.
,
2016
, “
Investigation on the Fluid Selection and Evaporation Parametric Optimization for Sub- and Supercritical Organic Rankine Cycle
,”
Energy
,
96
, pp.
59
68
.
29.
Oyewunmi
,
O. A.
,
Lecompte
,
S.
,
Paepe
,
M. D.
, and
Markides
,
C. N.
,
2017
, “
Thermoeconomic Analysis of Recuperative Sub- and Transcritical Organic Rankine Cycle Systems
,”
Energy Procedia
,
129
, pp.
58
65
.
30.
Zhang
,
C.
,
Liu
,
C.
,
Wang
,
S.
,
Xu
,
X.
, and
Li
,
Q.
,
2017
, “
Thermo-Economic Comparison of Subcritical Organic Rankine Cycle Based on Different Heat Exchanger Configurations
,”
Energy
,
123
, pp.
728
741
.
31.
Yang
,
M.-H.
,
Yeh
,
R.-H.
, and
Hung
,
T.-C.
,
2017
, “
Thermo-Economic Analysis of the Transcritical Organic Rankine Cycle Using R1234yf/R32 Mixtures as the Working Fluids for Lower-Grade Waste Heat Recovery
,”
Energy
,
140
(Pt. 1), pp.
818
836
.
32.
Klein
,
S. A.
,
2017
, “Engineering Equation Solver Professional,” Version 10.221, F-Chart Software, Madison, WI.
You do not currently have access to this content.