Nanotechnology has had revolutionary effects in various fields of industry such as electronics, pharmaceuticals, and biomaterials. However, upstream oil industry has been noticeably slow in adopting the emerging technologies. This is mainly due to the exceptionally large investments needed to implement novel technologies in this industry. However, the projections for the increasing global energy demand require that oil and gas industry inevitably move toward adopting the emerging technologies. The high risk associated with enormous investments required for this aim necessitates measured and well-researched energy policies, with regard to the implementation of nanotechnology in the oil and gas industry. This paper presents a concise summary of the research reported in the literature on the potential benefits of nanotechnology in upstream oil industry. These applications were categorized into ten groups, and presented to a pool of experts, who judged on their relative importance with respect to various decision-making criteria. All this information was then compiled into a single matrix, which indicates the priority of each investment alternative with respect to every criterion in the form of a raw number. Finally, using a decision-making software package, a dynamic analytic hierarchical process (AHP) analysis was performed, providing a route to customized investment policies.

References

1.
EIA, 2015, “
Annual Energy Outlook 2015 With Projections to 2040
,” United States Energy Information Administration, Washington, DC, accessed Jan. 5, 2017, https://www.eia.gov/outlooks/aeo/pdf/0383(2015).pdf
2.
British Petroleum Company,
2014
, “BP Statistical Review of World Energy June 2014,” British Petroleum Co., London, accessed Jan. 5, 2017, https://www.bp.com/content/dam/bp-country/de_de/PDFs/brochures/BP-statistical-review-of-world-energy-2014-full-report.pdf
3.
ExxonMobil, 2017, “
2017 Outlook for Energy: A View to 2040
,” Exxon Mobil Corporation, Irving, TX, accessed Jan. 5, 2017, http://cdn.exxonmobil.com/~/media/global/files/outlook-for-energy/2017/2017-outlook-for-energy.pdf
4.
Saggaf
,
M. M.
,
2008
, “
A Vision for Future Upstream Technologies
,”
J. Pet. Technol.
,
60
(3), pp.
54
98
.
5.
Perrons
,
R. K.
, 2014, “
How Innovation and R&D Happen in the Upstream Oil & Gas Industry: Insights From a Global Survey
,”
J. Pet. Sci. Eng.
,
124
, pp. 301–312.
6.
El-Banbi
,
A. H.
,
2010
, “
Technology and Innovation: Do We Do Enough in Our Industry?
,”
North Africa Technical Conference and Exhibition, Cairo, Egypt
, Feb. 14–17,
SPE
Paper No. SPE-128485-MS.
7.
Vincent Wong
,
K.
,
2014
, “
Need for Engineering Solutions to Problems Associated With Offshore Oil and Gas Production
,”
ASME J. Energy Resour. Technol.
,
136
(3), p.
034702
.
8.
Farokhzad
,
O. C.
, and
Langer
,
R.
,
2009
, “
Impact of Nanotechnology on Drug Delivery
,”
ACS Nano.
,
3
(1), pp.
16
20
.
9.
Whitesides
,
G. M.
,
2005
, “
Nanoscience, Nanotechnology, and Chemistry
,”
Small
,
1
(2), pp.
172
179
.
10.
Tseng
,
J. C.
, and
Ellenbogen
,
G. Y.
,
2001
, “
Toward Nanocomputers
,”
Science
,
294
(5545), pp.
1293
1294
.
11.
Wong
,
K.
, and
Dia
,
S.
,
2017
, “
Nanotechnology in Batteries
,”
ASME J. Energy Resour. Technol.
,
139
(1), p.
014001
.
12.
Wong
,
K. V.
,
Perilla
,
N.
, and
Paddon
,
A.
,
2013
, “
Nanoscience and Nanotechnology in Solar Cells
,”
ASME J. Energy Resour. Technol.
,
136
(1), p.
014001
.
13.
Krishnamoorti
,
R.
,
2006
, “
Extracting the Benefits of Nanotechnology for the Oil Industry
,”
J. Pet. Technol.
,
58
(11), pp.
24
26
.
14.
Mathieson
,
D.
,
2010
, “
Nanotechnology: Coming of Age or Heralding a New Age?
,”
J. Pet. Technol.
,
62
(9), pp.
18
19
.
15.
Ponmani
,
S.
,
Nagarajan
,
R.
, and
Sangwai
,
J.
,
2013
, “
Applications of Nanotechnology for Upstream Oil and Gas Industry
,”
J. Nano Res.
,
24
, pp.
7
15
.
16.
Ju
,
B.
, and
Fan
,
T.
,
2009
, “
Experimental Study and Mathematical Model of Nanoparticle Transport in Porous Media
,”
Powder Technol.
,
192
(2), pp.
195
202
.
17.
Zargartalebi
,
M.
,
Kharrat
,
R.
,
Barati
,
N.
, and
Zargartalebi
,
A.
,
2013
, “
Slightly Hydrophobic Silica Nanoparticles for Enhanced Oil Recovery: Interfacial and Rheological Behaviour
,”
Int. J. Oil, Gas Coal Technol.
,
6
(4), pp.
408
421
.
18.
Chapman
,
D.
, and
Trybula
,
W.
,
2012
, “
Meeting the Challenges of Oilfield Exploration Using Intelligent Micro and Nano-Scale Sensors
,”
IEEE 12th International Conference on Nanotechnology
(
IEEE-NANO
), Birmingham, UK, Aug. 20–23, pp.
1
6
.
19.
Li
,
J.
, and
Meyyappan
,
M.
,
2011
, “Real Time Oil Reservoir Evaluation Using Nanotechnology,” National Aeronautics and Space Administration, Washington, DC, U.S. Patent No.
US7875455 B1
.http://www.google.co.in/patents/US7875455
20.
Nabhani
,
N.
,
Emami
,
M.
,
Moghadam
,
A. B. T.
,
Iskandar
,
F.
, and
Abdullah
,
M.
,
2011
, “
Application of Nanotechnology and Nanomaterials in Oil and Gas Industry
,”
AIP Conf. Proc.
,
1415
, pp.
128
131
.
21.
Suleimanov
,
B. A.
,
Ismailov
,
F. S.
, and
Veliyev
,
E. F.
,
2011
, “
Nanofluid for Enhanced Oil Recovery
,”
J. Pet. Sci. Eng.
,
78
(2), pp.
431
437
.
22.
Bargozin
,
H.
, and
Moghaddas
,
J. S.
,
2013
, “
Stability of Nanoporous Silica Aerogel Dispersion as Wettability Alteration Agent
,”
J. Dispers. Sci. Technol.
,
34
(10), pp. 1454–1464.
23.
Lai
,
Y. T.
,
Wang
,
W. C.
, and
Wang
,
H. H.
,
2008
, “
AHP- and Simulation-Based Budget Determination Procedure for Public Building Construction Projects
,”
Autom. Constr.
,
17
(5), pp.
623
632
.
24.
Wong
,
J. K. W.
, and
Li
,
H.
,
2008
, “
Application of the Analytic Hierarchy Process (AHP) in Multi-Criteria Analysis of the Selection of Intelligent Building Systems
,”
Build. Environ.
,
43
(1), pp.
108
125
.
25.
Daˇgdeviren
,
M.
,
Yavuz
,
S.
, and
Kilinç
,
N.
,
2009
, “
Weapon Selection Using the AHP and TOPSIS Methods Under Fuzzy Environment
,”
Expert Syst. Appl.
,
36
(4), pp.
8143
8151
.
26.
Erol
,
Ö.
, and
Kılkış
,
B.
,
2012
, “
An Energy Source Policy Assessment Using Analytical Hierarchy Process
,”
Energy Convers. Manage.
,
63
, pp.
245
252
.
27.
San Cristóbal
,
J. R.
,
2011
, “
Multi-Criteria Decision-Making in the Selection of a Renewable Energy Project in Spain: The Vikor Method
,”
Renewable Energy
,
36
(2), pp.
498
502
.
28.
Nixon
,
J. D.
,
Dey
,
P. K.
,
Ghosh
,
S. K.
, and
Davies
,
P. A.
,
2013
, “
Evaluation of Options for Energy Recovery From Municipal Solid Waste in India Using the Hierarchical Analytical Network Process
,”
Energy
,
59
, pp.
215
223
.
29.
Pitkethly
,
M. J.
,
2004
, “
Nanomaterials—The Driving Force
,”
Mater. Today
,
7
(12), pp.
20
29
.
30.
Peng, B., Tang, J., Luo, J., Wang, P., Ding, B., and Tam, K. C., 2017, “
Applications of Nanotechnology in Oil and Gas Industry: Progress and Perspective
,”
Can. J. Chem. Eng.
,
96
(1), pp. 91–100.
31.
Avendano
,
C.
,
Lee
,
S. S.
,
Escalera
,
G.
, and
Colvin
,
V.
,
2012
, “
Magnetic Characterization of Nanoparticles Designed for Use as Contrast Agents for Downhole Measurements
,”
SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk
, The Netherlands, June 12–14,
SPE
Paper No. SPE-157123-MS.
32.
Aderibigbe
,
A. A.
,
Cheng
,
K.
,
Heidari
,
Z.
,
Killough
,
J. E.
,
Fuss
,
T.
, and
Stephens
,
W.
,
2014
, “
Detection of Propping Agents in Fractures Using Magnetic Susceptibility Measurements Enhanced by Magnetic Nanoparticles
,”
SPE Annual Technical Conference and Exhibition
, Amsterdam, The Netherlands, Oct. 27–29,
SPE
Paper No. SPE-170818-MS.
33.
Sen
,
P.
,
Kleinhammes
,
A.
,
Wu
,
Y.
, and
Ahmadian
,
M.
,
2013
, “Dielectric Contrast Agents and Methods,” University of North Carolina, Chapel Hill, NC, Patent No.
WO 2013181527 A1
.http://www.google.com/patents/WO2013181527A1?cl=en
34.
Caenn
,
R.
,
Darley
,
H.
, and
Gray
,
G. R.
,
2011
,
Composition and Properties of Drilling and Completion Fluids
, 6th ed.,
Gulf Professional Publishing
, Boston, MA.
35.
Kong
,
X.
, and
Ohadi
,
M.
,
2010
, “
Applications of Micro and Nano Technologies in the Oil and Gas Industry—Overview of the Recent Progress
,”
Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates
, Nov. 1–4,
SPE
Paper No. SPE-138241-MS.
36.
Yang
,
J.
,
Ji
,
S.
,
Li
,
R.
,
Qin
,
W.
, and
Lu
,
Y.
,
2015
, “
Advances of Nanotechnologies in Oil and Gas Industries
,”
Energy Explor. Exploit.
,
33
(5), pp.
639
657
.
37.
Abdo
,
J.
, and
Haneef
,
M. D.
,
2012
, “
Nano-Enhanced Drilling Fluids: Pioneering Approach to Overcome Uncompromising Drilling Problems
,”
ASME J. Energy Resour. Technol.
,
134
(1), p.
014501
.
38.
Li
,
H.
,
Xiao
,
H. G.
,
Yuan
,
J.
, and
Ou
,
J.
,
2004
, “
Microstructure of Cement Mortar With Nano-Particles
,”
Composites, Part B
,
35
(2), pp.
185
189
.
39.
Xu
,
G.
,
Zhang
,
J.
, and
Song
,
G.
,
2003
, “
Effect of Complexation on the Zeta Potential of Silica Powder
,”
Powder Technol.
,
134
(3), pp.
218
222
.
40.
Shih
,
J. Y.
,
Chang
,
T. P.
, and
Hsiao
,
T. C.
,
2006
, “
Effect of Nanosilica on Characterization of Portland Cement Composite
,”
Mater. Sci. Eng. A
,
424
(1–2), pp.
266
274
.
41.
Li
,
G.
,
2004
, “
Properties of High-Volume Fly Ash Concrete Incorporating Nano-SiO2
,”
Cem. Concr. Res.
,
34
(6), pp.
1043
1049
.
42.
Rahman
,
M. K.
,
Amer
,
S. A.
, and
Al-Majed
,
A. A.
,
2014
, “Portland Saudi Cement Type-g With Nanosilica Additive for High Pressure-High Temperature Applications,” King Abdulaziz City for Science and Technology/King Fahd University of Petroleum and Minerals, Riyadh/Dhahran, Saudi Arabia, U.S. Patent No.
US20140332217 A1
.http://www.google.com/patents/US20140332217
43.
Campillo
,
I.
,
Guerrero
,
A.
,
Dolado
,
J. S.
,
Porro
,
A.
,
Ibáñez
,
J. A.
, and
Goñi
,
S.
,
2007
, “
Improvement of Initial Mechanical Strength by Nanoalumina in Belite Cements
,”
Mater. Lett.
,
61
(8–9), pp.
1889
1892
.
44.
Dolado
,
J. S.
,
Campillo
,
I.
,
Erkizia
,
E.
,
Ibáñez
,
J. A.
,
Porro
,
A.
,
Guerrero
,
A.
, and
Goñi
,
S.
,
2007
, “
Effect of Nanosilica Additions on Belite Cement Pastes Held in Sulfate Solutions
,”
J. Am. Ceram. Soc.
,
90
(12), pp.
3973
3976
.
45.
Roddy
,
C. W.
,
Chattrerij
,
J.
, and
Cromwell
,
R. S.
,
2015
, “Well Treatment Fluids and Methods Utilizing Nano-Particles,” Patent No.
CA2863283 A1
http://www.google.com.sg/patents/CA2863283A1?cl=pt-PT.
46.
Ružić
,
J.
,
Stašić
,
J.
,
Rajković
,
V.
, and
Božić
,
D.
,
2013
, “
Strengthening Effects in Precipitation and Dispersion Hardened Powder Metallurgy Copper Alloys
,”
Mater. Des.
,
49
, pp.
746
754
.
47.
Martínez-Martínez
,
D.
,
Sánchez-López
,
J. C.
,
Rojas
,
T. C.
,
Fernández
,
A.
,
Eaton
,
P.
, and
Belin
,
M.
,
2005
, “
Structural and Microtribological Studies of Ti-C-N Based Nanocomposite Coatings Prepared by Reactive Sputtering
,”
Thin Solid Films.
,
472
(1–2), pp.
64
70
.
48.
Hussain
,
Z.
, and
Nur Hawadah
,
M. S.
,
2012
, “
Phase Evolution in Carbide Dispersion Strengthened Nanostructured Copper Composite by High Energy Ball Milling
,”
AIP Conf. Proc.
,
1476
(
1
), pp.
378
381
.
49.
Dubrovinskaia
,
N.
,
Solozhenko
,
V. L.
,
Miyajima
,
N.
,
Dmitriev
,
V.
,
Kurakevych
,
O. O.
, and
Dubrovinsky
,
L.
,
2007
, “
Superhard Nanocomposite of Dense Polymorphs of Boron Nitride: Noncarbon Material Has Reached Diamond Hardness
,”
Appl. Phys. Lett.
,
90
(10), p. 101912.
50.
Mackay
,
E. J.
,
Collins
,
I. R.
,
Jordan
,
M. M.
, and
Feasey
,
N.
,
2003
, “
PWRI: Scale Formation Risk Assessment and Management
,”
International Symposium on Oilfield Scale
, Aberdeen, UK, Jan. 29–30,
SPE
Paper No. SPE-80385-MS.
51.
Moghadasi
,
J.
,
Jamialahmadi
,
M.
,
Müller-Steinhagen
,
H.
,
Sharif
,
A.
,
Ghalambor
,
A.
,
Izadpanah
,
M. R.
, and
Motaie
,
E.
,
2003
, “
Scale Formation in Iranian Oil Reservoir and Production Equipment During Water Injection
,”
International Symposium on Oilfield Scale
, Aberdeen, UK, Jan. 29–30,
SPE
Paper No. SPE-80406-MS.
52.
Kiaei
,
Z.
, and
Haghtalab
,
A.
,
2014
, “
Experimental Study of Using Ca-DTPMP Nanoparticles in Inhibition of CaCO3 Scaling in a Bulk Water Process
,”
Desalination.
,
338
, pp.
84
92
.
53.
Sharma
,
T.
,
Kumar
,
G. S.
, and
Sangwai
,
J. S.
,
2015
, “
Viscoelastic Properties of Oil-in-Water (o/w) Pickering Emulsion Stabilized by Surfactant–Polymer and Nanoparticle–Surfactant–Polymer Systems
,”
Ind. Eng. Chem. Res.
,
54
(5), pp.
1576
1584
.
54.
Nasr-El-Din
,
H. A.
,
Gurluk
,
M. R.
, and
Crews
,
J. B.
,
2013
, “
Enhancing the Performance of Viscoelastic Surfactant Fluids Using Nanoparticles
,”
EAGE Annual Conference and Exhibition Incorporating SPE Europec
, London, June 10–13,
SPE
Paper No. SPE-164900-MS.
55.
Huang
,
T.
, and
Crews
,
J. B.
,
2008
, “
Nanotechnology Applications in Viscoelastic Surfactant Stimulation Fluids
,”
SPE Prod. Oper.
,
23
(4), pp.
512
517
.
56.
Crews
,
J. B.
, and
Huang
,
T.
,
2008
, “
Performance Enhancements of Viscoelastic Surfactant Stimulation Fluids With Nanoparticles
,”
Europec/EAGE Conference and Exhibition
, Rome, Italy, June 9–12,
SPE
Paper No. SPE-113533-MS.
57.
Huang
,
T.
,
Crews
,
J. B.
, and
Willingham
,
J. R.
,
2008
, “
Nanoparticles for Formation Fines Fixation and Improving Performance of Surfactant Structure Fluids
,”
International Petroleum Technology Conference (IPTC)
, Kuala Lumpur, Malaysia, Dec. 3–5, Paper No.
IPTC-12414-MS
.
58.
Franco
,
C.
,
Montoya
,
T.
,
Nassar
,
N. N.
,
Pereira-Almao
,
P.
, and
Cortés
,
F. B.
,
2013
, “
Adsorption and Subsequent Oxidation of Colombian Asphaltenes Onto Nickel and/or Palladium Oxide Supported on Fumed Silica Nanoparticles
,”
Energy Fuels
,
27
(12), pp.
7336
7347
.
59.
Abu Tarboush
,
B. J.
, and
Husein
,
M. M.
,
2012
, “
Adsorption of Asphaltenes From Heavy Oil Onto In Situ Prepared NiO Nanoparticles
,”
J. Colloid Interface Sci.
,
378
(1), pp.
64
69
.
60.
Nassar
,
N. N.
,
Hassan
,
A.
, and
Pereira-Almao
,
P.
,
2011
, “
Application of Nanotechnology for Heavy Oil Upgrading: Catalytic Steam Gasification/Cracking of Asphaltenes
,”
Energy Fuels.
,
25
(4), pp.
1566
1570
.
61.
Li
,
J.
,
Sculley
,
J.
, and
Zhou
,
H.
,
2012
, “
Metal Organic Frameworks for Separations
,”
Chem. Rev.
,
112
(2), pp.
869
932
.
62.
Li
,
J.-R.
,
Kuppler
,
R. J.
, and
Zhou
,
H.-C.
,
2009
, “
Selective Gas Adsorption and Separation in Metal-Organic Frameworks
,”
Chem. Soc. Rev.
,
38
, pp.
1477
1504
.
63.
Bernardo
,
P.
,
Drioli
,
E.
, and
Golemme
,
G.
,
2009
, “
Membrane Gas Separation: A Review/State of the Art
,”
Ind. Eng. Chem. Res.
,
48
(10), pp.
4638
4663
.
64.
Koros
,
W. J.
, and
Fleming
,
G. K.
,
1993
, “
Membrane-Based Gas Separation
,”
J. Membr. Sci.
,
83
(1), pp.
1
80
.
65.
Cong
,
H.
,
Radosz
,
M.
,
Towler
,
B. F.
, and
Shen
,
Y.
,
2007
, “
Polymer-Inorganic Nanocomposite Membranes for Gas Separation
,”
Sep. Purif. Technol.
,
55
(3), pp.
281
291
.
66.
Halim
,
A.
,
Fu
,
Q.
,
Yong
,
Q.
,
Gurr
,
P. A.
,
Kentish
,
S. E.
, and
Qiao
,
G. G.
,
2014
, “
Soft Polymeric Nanoparticle Additives for Next Generation Gas Separation Membranes
,”
J. Mater. Chem. A
,
2
, pp.
4999
5009
.
67.
Ahn
,
J.
,
Chung
,
W.-J.
,
Pinnau
,
I.
, and
Guiver
,
M. D.
,
2008
, “
Polysulfone/Silica Nanoparticle Mixed-Matrix Membranes for Gas Separation
,”
J. Membr. Sci.
,
314
(1–2), pp.
123
133
.
68.
Thomas
,
S.
,
2008
, “
Enhanced Oil Recovery—An Overview
,”
Oil Gas Sci. Technol.
,
63
(1), pp.
9
19
.
69.
Ju
,
B.
,
Dai
,
S.
,
Luan
,
Z.
,
Zhu
,
T.
,
Su
,
X.
, and
Qiu
,
X.
,
2002
, “
A Study of Wettability and Permeability Change Caused by Adsorption of Nanometer Structured Polysilicon on the Surface of Porous Media
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
, Melbourne, Australia, Oct. 8–10,
SPE
Paper No. SPE-77938-MS.
70.
Son
,
H.
,
Kim
,
H.
,
Lee
,
G.
,
Kim
,
J.
, and
Sung
,
W.
,
2014
, “
Enhanced Oil Recovery Using Nanoparticle-Stabilized Oil/Water Emulsions
,”
Korean J. Chem. Eng.
,
31
(1), pp.
338
342
.
71.
Safari
,
M.
,
Golsefatan
,
A.
,
Rezaei
,
A.
, and
Jamialahmadi
,
M.
,
2014
, “
Simulation of Silica Nanoparticle Flooding for Enhancing Oil Recovery
,”
Pet. Sci. Technol.
,
33
(2), pp.
152
158
.
72.
Ogolo
,
N. A.
,
Olafuyi
,
O. A.
, and
Onyekonwu
,
M. O.
,
2012
, “
Enhanced Oil Recovery Using Nanoparticles
,”
SPE Saudi Arabia Section Technical Symposium and Exhibition
, Al-Khobar, Saudi Arabia, Apr. 8–11,
SPE
Paper No. SPE-160847-MS.
73.
Bargozin
,
H.
, and
Moghaddas
,
J. S.
,
2013
, “
Wettability Alteration With Silica Aerogel Nanodispersion
,”
J. Dispersion Sci. Technol.
,
34
, pp.
1130
1138
.
74.
Olajire
,
A. A.
,
2014
, “
Review of ASP EOR (Alkaline Surfactant Polymer Enhanced Oil Recovery) Technology in the Petroleum Industry: Prospects and Challenges
,”
Energy
,
77
, pp.
963
982
.
75.
You
,
Q.
,
Dai
,
C.
,
Tang
,
Y.
,
Guan
,
P.
,
Zhao
,
G.
, and
Zhao
,
F.
,
2013
, “
Study on Performance Evaluation of Dispersed Particle Gel for Improved Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
135
(4), p.
042903
.
76.
Xu
,
X.
,
Saeedi
,
A.
, and
Liu
,
K.
,
2016
, “
Experimental Study on a Novel Foaming Formula for CO2 Foam Flooding
,”
ASME J. Energy Resour. Technol.
,
139
(2), p.
022902
.
77.
Mohebbifar
,
M.
,
Ghazanfari
,
M. H.
, and
Vossoughi
,
M.
,
2014
, “
Experimental Investigation of Nano-Biomaterial Applications for Heavy Oil Recovery in Shaly Porous Models: A Pore-Level Study
,”
ASME J. Energy Resour. Technol.
,
137
(1), p.
014501
.
78.
Sedaghat, M. H., Ghazanfari, M. H.,
Parvazdavani
,
M.
, and
Morshedi
,
S.
,
2016
, “
Experimental Investigation of Microscopic/Macroscopic Efficiency of Polymer Flooding in Fractured Heavy Oil Five-Spot Systems
,”
ASME J. Energy Resour. Technol.
,
135
(3), p. 032901.
79.
Gutiérrez
,
J. M.
,
González
,
C.
,
Maestro
,
A.
,
Solè
,
I.
,
Pey
,
C. M.
, and
Nolla
,
J.
,
2008
, “
Nano-Emulsions: New Applications and Optimization of Their Preparation
,”
Curr. Opin. Colloid Interface Sci.
,
13
(4), pp.
245
251
.
80.
Solans
,
C.
,
Izquierdo
,
P.
,
Nolla
,
J.
,
Azemar
,
N.
, and
Garcia-Celma
,
M. J.
,
2005
, “
Nano-Emulsions
,”
Curr. Opin. Colloid Interface Sci.
,
10
(3–4), pp.
102
110
.
81.
Hashimah Alias, N., Ghazali, N. A., Tengku Mohd, T. A., Idris, S. A., Yahya, E., and Mohd Yusof, N.,
2015
, “
Nanoemulsion Applications in Enhanced Oil Recovery and Wellbore Cleaning: An Overview
,”
Appl. Mech. Mater.
,
754–755
, pp. 1161–1168.
82.
Henriksen
,
A. D. P.
,
1997
, “
A Technology Assessment Primer for Management of Technology
,”
Int. J. Technol. Manage.
,
13
(5/6), p.
615
.
83.
Lee
,
S. K.
,
Yoon
,
Y. J.
, and
Kim
,
J. W.
,
2007
, “
A Study on Making a Long-Term Improvement in the National Energy Efficiency and GHG Control Plans by the AHP Approach
,”
Energy Policy
,
35
(5), pp.
2862
2868
.
84.
Gerdsri
,
N.
, and
Kocaoglu
,
D. F.
,
2007
, “
Applying the Analytic Hierarchy Process (AHP) to Build a Strategic Framework for Technology Roadmapping
,”
Math. Comput. Model.
,
46
(7–8), pp.
1071
1080
.
85.
Bozbura
,
F. T.
, and
Beskese
,
A.
,
2007
, “
Prioritization of Organizational Capital Measurement Indicators Using Fuzzy AHP
,”
Int. J. Approximate Reasoning
,
44
(2), pp.
124
147
.
86.
Fallahi
,
K.
,
Leung
,
H.
, and
Chandana
,
S.
,
2009
, “
An Integrated ACO-AHP Approach for Resource Management Optimization
,”
2009 IEEE International Conference on Systems, Man, and Cybernetics
(
SMC
), San Antonio, TX, Oct. 11–14, pp.
4335
4340
.
87.
Kurka
,
T.
,
2013
, “
Application of the Analytic Hierarchy Process to Evaluate the Regional Sustainability of Bioenergy Developments
,”
Energy
,
62
, pp.
393
402
.
88.
Milutinović
,
B.
,
Stefanović
,
G.
,
Dassisti
,
M.
,
Marković
,
D.
, and
Vučković
,
G.
,
2014
, “
Multi-Criteria Analysis as a Tool for Sustainability Assessment of a Waste Management Model
,”
Energy
,
74
, pp.
190
201
.
89.
Ren
,
J.
,
Tan
,
S.
,
Goodsite
,
M. E.
,
Sovacool
,
B. K.
, and
Dong
,
L.
,
2015
, “
Sustainability, Shale Gas, and Energy Transition in China: Assessing Barriers and Prioritizing Strategic Measures
,”
Energy
,
84
, pp.
551
562
.
90.
Shen
,
Y. C.
,
Chou
,
C. J.
, and
Lin
,
G. T. R.
,
2011
, “
The Portfolio of Renewable Energy Sources for Achieving the Three E Policy Goals
,”
Energy
,
36
(5), pp.
2589
2598
.
91.
Atmaca
,
E.
, and
Basar
,
H. B.
,
2012
, “
Evaluation of Power Plants in Turkey Using Analytic Network Process (ANP)
,”
Energy
,
44
(1), pp.
555
563
.
92.
Saaty
,
T. L.
,
1994
,
Fundamentals of Decision Making and Priority Theory With the Analytic Hierarchy Process
,
RWS Publications
, London.
93.
Saaty
,
T. L.
,
1980
,
The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation
,
McGraw-Hill
, London.
You do not currently have access to this content.