Static Poisson's ratio (νstatic) is a key factor in determine the in-situ stresses in the reservoir section. νstatic is used to calculate the minimum horizontal stress which will affect the design of the optimum mud widow and the density of cement slurry while drilling. In addition, it also affects the design of the casing setting depth. νstatic is very important for field development and the incorrect estimation of it may lead to heavy investment decisions. νstatic can be measured in the lab using a real reservoir cores. The laboratory measurements of νstatic will take long time and also will increase the overall cost. The goal of this study is to develop accurate models for predicting νstatic for carbonate reservoirs based on wireline log data using artificial intelligence (AI) techniques. More than 610 core and log data points from carbonate reservoirs were used to train and validate the AI models. The more accurate AI model will be used to generate a new correlation for calculating the νstatic. The developed artificial neural network (ANN) model yielded more accurate results for estimating νstatic based on log data; sonic travel times and bulk density compared to adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) methods. The developed empirical equation for νstatic gave a coefficient of determination (R2) of 0.97 and an average absolute percentage error (AAPE) of 1.13%. The developed technique will help geomechanical engineers to estimate a complete trend of νstatic without the need for coring and laboratory work and hence will reduce the overall cost of the well.

References

1.
Rui
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
2.
Guo
,
J.
,
Luo
,
B.
,
Lu
,
C.
,
Lai
,
J.
, and
Ren
,
J.
,
2017
, “
Numerical Investigation of Hydraulic Fracture Propagation in a Layered Reservoir Using the Cohesive Zone Method
,”
Eng. Fract. Mech.
,
186
, pp.
195
207
.
3.
Rui
,
Z.
,
Han
,
G.
,
Zhang
,
H.
,
Wang
,
S.
,
Pu
,
H.
, and
Ling
,
K.
,
2017
, “
A New Model to Evaluate Two Leak Points in a Gas Pipeline
,”
J. Natural Gas Sci. Eng.
,
46
, pp.
491
497
.
4.
Chang
,
C.
,
Zoback
,
M. D.
, and
Khaksar
,
A.
,
2006
, “
Empirical Relations Between Rock Strength and Physical Properties in Sedimentary Rocks
,”
J. Pet. Sci. Eng.
,
51
(
3–4
), pp.
223
237
.
5.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042905
.
6.
Cui
,
G.
,
Ren
,
S.
,
Rui
,
Z.
,
Ezekiel
,
J.
,
Zhang
,
L.
, and
Wang
,
H.
,
2018
, “
The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System
,”
Appl. Energy
, in press.
7.
Cui
,
K.
,
Qain
,
Y.
,
Jeon
,
I.
,
Anisimov
,
A.
,
Matsuo
,
Y.
,
Kauppinen
,
E.
, and
Maruyama
,
S.
,
2017
, “
Scalable and Solid-State Redox Functionalization of Transparent Single-Walled Carbon Nanotube Films for Highly Efficient and Stable Solar Cells
,”
Adv. Energy Mater.
,
7
(
18
), p.
1700449
.
8.
Jaegar
,
J.
,
Cook
,
N. G.
, and
Zimmerman
,
R.
,
2007
,
Fundamentals of Rock Mechanics
, 4th ed.,
Wiley-Blackwell
, Malden, MA.
9.
Gatens
,
J. M.
,
Harrison
,
C. W.
,
Lancaster
,
D. E.
, and
Guidry
,
F. K.
,
1990
, “
In-Situ Stress Tests and Acoustic Logs Determine Mechanical Propertries and Stress Profiles in the Devonian Shales
,”
SPE Form. Eval.
,
5
(
3
), pp.
248
254
.
10.
Nes
,
O.
,
Fjær
,
E.
,
Tronvoll
,
J.
,
Kristiansen
,
T. G.
, and
Horsrud
,
P.
,
2012
, “
Drilling Time Reduction Through an Integrated Rock Mechanics Analysis
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032802
.
11.
Chan
,
T.
,
Hood
,
M.
, and
Board
,
M.
,
1982
, “
Rock Properties and Their Effect on Thermally Induced Displacements and Stresses
,”
ASME J. Energy Resour. Technol.
,
104
(
4
), pp.
384
388
.
12.
Phani
,
K. K.
,
2008
, “
Correlation Between Ultrasonic Shear Wave Velocity and Poisson's Ratio for Isotropic Porous Materials
,”
J. Mater. Sci.
,
43
(
1
), pp.
316
323
.
13.
Ameen
,
M. S.
,
Smart
,
B. G. D.
,
Somerville
,
J. M.
,
Hammilton
,
S.
, and
Naji
,
N. A.
,
2009
, “
Predicting Rock Mechanical Properties of Carbonates From Wireline Logs (a Case Study: Arab-D Reservoir, Ghawar Field, Saudi Arabia)
,”
Mar. Pet. Geol.
,
26
(
4
), pp.
430
444
.
14.
Al-Anazi
,
A.
, and
Gates
,
I. D.
,
2010
, “
A Support Vector Machine Algorithm to Classify Lithofacies and Model Permeability in Heterogeneous Reservoirs
,”
Eng. Geol.
,
114
(
3–4
), pp.
267
277
.
15.
Fahrenthold
,
E. P.
, and
Gray
,
K. E.
,
1988
, “
Compaction Performance of Geopressured-Geothermal Reservoir Rock
,”
ASME J. Energy Resour. Technol.
,
110
(
3
), pp.
189
195
.
16.
Gercek
,
H.
,
2007
, “
Poisson's Ratio Values for Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
44
(
1
), pp.
1
13
.
17.
Howard
,
G. C.
, and
Fast
,
C. R.
,
1970
, “Hydraulic Fracturing,” Monograph, Vol. 2, 1st ed., Society of Petroleum Engineers of AIME, Richardson, TX.
18.
AL-Ameri
,
W.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M.
,
2015
, “
Long-Term Effects of CO2 Sequestration on Rock Mechanical Properties
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012201
.
19.
Canady
,
W. J.
,
2011
, “
A Method for Full-Range Young's Modulus Correction
,”
North American Unconventional Gas Conference and Exhibition
, The Woodlands, TX, June14–16,
SPE
Paper No. SPE 143604.
20.
Khaksar
,
A.
,
Taylor
,
P. G.
,
Fang
,
Z.
,
Kayes
,
T. J.
,
Salazar
,
A.
, and
Rahman
,
K.
,
2009
, “
Rock Strength From Core and Logs, Where We Stand and Ways to Go
,”
EUROPEC/EAGE Conference and Exhibition
, Amsterdam, The Netherlands, June 8–11,
SPE
Paper No. SPE 121972.
21.
Abdulraheem
,
A.
,
Ahmed
,
M.
,
Vantala
,
A.
, and
Parvez
,
T.
,
2009
, “
Prediction of Rock Mechanical Parameters for Hydrocarbon Reservoirs Using Different Artificial Intelligence Techniques
,”
SPE Saudi Arabia Section Technical Symposium, Al-Khobar
, Saudi Arabia, May 9–11,
SPE
Paper No. SPE-126094.
22.
Kumar
,
A.
,
Jayakumar
,
T.
,
Raj
,
B.
, and
Ray
,
K. K.
,
2003
, “
Correlation Between Ultrasonic Shear Wave Velocity and Poisson's Ratio for Isotropic Solid Materials
,”
Acta Mater.
,
51
(
8
), pp.
2417
2426
.
23.
Asoodeh
,
M.
,
2013
, “
Prediction of Poisson's Ratio From Conventional Well Log Data: A Committee Machine With Intelligent Systems Approach
,”
Energy Sources, Part A: Recovery Util. Environ. Eff.
,
35
(
10
), pp.
962
975
.
24.
Arabjamaloei
,
R.
, and
Shadizadeh
,
S.
,
2011
, “
Modeling and Optimizing Rate of Penetration Using Intelligent Systems in an Iranian Southern Oil Field (Ahwaz Oil Field)
,”
Pet. Sci. Technol.
,
29
(
16
), pp.
1637
1648
.
25.
Schalkoff
,
R.
,
1997
,
Artificial Neural Networks
,
McGraw-Hill
,
New York
.
26.
Ali
,
J. K.
,
1994
, “
Neural Networks: A New Tool for the Petroleum Industry?
,”
European Petroleum Computer Conference
, Aberdeen, UK, Mar. 5–17,
SPE
Paper No. SPE 27561.
27.
Haykin
,
S. S.
,
1998
,
Neural Networks, a Comprehensive Foundation
,
Prentice Hall
, Upper Saddle River, NJ.
28.
Aalst
,
W. M. P.
,
Rubin
,
V.
,
Verbeek
,
H. M. W.
,
Van Dongen
,
B. F.
,
Kindler
,
E.
, and
Günther
,
C. W.
,
2010
, “
Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfitting
,”
Software Syst. Model.
,
9
(
1
), pp.
87
111
.
29.
Lippman
,
R. K.
,
1987
, “
An Introduction to Computing With Neural Nets
,”
IEEE ASSP Mag.
,
4
(
2
), pp.
4
22
.
30.
Goyal
,
S.
, and
Goyal
,
G. K.
,
2011
, “
Cascade and Feedforward Backpropagation Artificial Neural Network Models for Prediction of Sensory Quality of Instant Coffee Flavoured Sterilized Drink
,”
Can. J. Artif. Intell., Mach. Learn. Pattern Recognit.
,
2
(
6
), pp.
78
82
.
31.
Vineis
,
P.
, and
Rainoldi
,
A.
,
1997
, “
Neural Networks and Logistic Regression: Analysis of a Case-Control Study on Myocardial Infarction
,”
J. Clin. Epidemiol.
,
50
(
11
), pp.
1309
1310
.
32.
Burbidge
,
R.
,
Trotter
,
M.
,
Buxton
,
B.
, and
Holden
,
S.
,
2001
, “
Drug Design by Machine Learning: Support Vector Machines for Pharmaceutical Data Analysis
,”
Comput. Chem.
,
26
(
1
), pp.
5
14
.
33.
Tahmasebi
,
P.
,
2012
, “
A Hybrid Neural Networks-Fuzzy Logic-Genetic Algorithm for Grade Estimation
,”
Comput. Geosci.
,
42
, pp.
18
27
.
34.
Alarifi
,
S.
,
AlNuaim
,
S.
, and
Abdulraheem
,
A.
,
2015
, “
Productivity Index Prediction for Oil Horizontal Wells Using Different Artificial Intelligence Techniques
,”
SPE Middle East Oil & Gas Show and Conference
, Manama, Bahrain, Mar. 8–11,
SPE
Paper No. SPE 172729-MS.
35.
Attia
,
M.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M. A.
,
2015
, “
Pressure Drop Due to Multiphase Flow Using Four Artificial Intelligence Methods
,”
SPE North Africa Technical Conference and Exhibition
, Cairo, Egypt, Sept. 14–16,
SPE
Paper No. SPE 175724.
36.
Walia
,
N.
,
Singh
,
H.
, and
Sharma
,
A.
,
2015
, “
ANFIS: Adaptive Neuro-Fuzzy Inference System- a Survey
,”
Int. J. Comput. Appl.
,
123
(
13
), pp.
32
38
.
37.
Uçar
,
T.
,
Karahoca
,
A.
, and
Karahoca
,
D.
,
2013
, “
Tuberculosis Disease Diagnosis by Using Adaptive Neuro Fuzzy Inference System and Rough Sets
,”
Neural Comput. Appl.
,
23
(
2
), pp.
471
483
.
38.
Guo
,
G.
,
2014
,
Support Vector Machines Applications
,
Y.
Ma
, and
G.
Guo
, eds.,
Springer International Publishing
,
Cham, Switzerland
.
39.
Anifowose
,
F. A.
,
Ewenla
,
A. O.
, and
Eludiora
,
S. I.
,
2011
, “
Prediction of Oil and Gas Reservoir Properties Using Support Vector Machines
,”
International Petroleum Technology Conference
, Bangkok, Thailand, Nov. 15–17,
SPE
Paper No. IPTC 14514.
40.
El-Sebakhy
,
E. A.
,
Sheltami
,
T.
,
Al-Bokhitan
,
S. Y.
,
Shaaban
,
Y.
,
Raharja
,
P. D.
, and
Khaeruzzaman
,
Y.
,
2007
, “
Support Vector Machines Framework for Predicting the PVT Properties of Crude Oil Systems
,”
SPE Middle East Oil and Gas Show and Conference
, Manama, Bahrain, Mar. 11–14,
SPE
Paper No. SPE 105698-MS.
41.
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Tariq
,
Z.
, and
Abdulraheem
,
A.
,
2017
, “
New Insights Into the Prediction of Heterogeneous Carbonate Reservoir Permeability From Well Logs Using Artificial Intelligent Network
,”
Neural Comput. Appl.
, epub.
42.
Elkatatny
,
S. M.
,
Tariq
,
Z.
, and
Mahmoud
,
M. A.
,
2016
, “
Real Time Prediction of Drilling Fluid Rheological Properties Using Artificial Neural Networks Visible Mathematical Model (White Box)
,”
J. Pet. Sci. Eng.
,
146
, pp.
1202
1210
.
43.
Elkatatny
,
S. M.
,
2017
, “
Real Time Prediction of Rheological Parameters of KCl Water-Based Drilling Fluid Using Artificial Neural Networks
,”
Arabian J. Sci. Eng.
,
42
(
4
), pp.
1655
1665
.
44.
Elkatatny
,
S. M.
, and
Mahmoud
,
M.
,
2017
, “
Development of New Correlations for the Oil Formation Volume Factor in Oil Reservoirs Using Artificial Intelligent White Box Technique
,”
Petroleum
, in press.
45.
Elkatatny
,
S. M.
, and
Mahmoud
,
M.
,
2017
, “
Development of a New Correlation for Bubble Point Pressure in Oil Reservoirs Using Artificial Intelligent Technique
,”
Arabian J. Sci. Eng.
, epub.
46.
Wang
,
Y.
, and
Salehi
,
S.
,
2015
, “
Application of Real-Time Field Data to Optimize Drilling Hydraulics Using Neural Network Approach
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062903
.
47.
Salehi
,
S.
,
Hareland
,
G.
,
Dehkordi
,
K. K.
,
Ganji
,
M.
, and
Abdollahi
,
M.
,
2009
, “
Casing Collapse Risk Assessment and Depth Prediction With a Neural Network System Approach
,”
J. Pet. Sci. Eng.
,
69
(
1–2
), pp.
156
162
.
48.
Tariq
,
Z.
,
Elkatatny
,
S. M.
,
Mahmoud
,
M. A.
,
Abdulraheem
,
A.
,
Abdelwahab
,
A. Z.
, and
Woldeamanuel
,
M.
,
2017
, “
Estimation of Rock Mechanical Parameters Using Artificial Intelligence Tools
,”
51st U.S. Rock Mechanics/Geomechanics Symposium Held, San Francisco
, CA, June 25–28, Paper No.
ARMA 17-301
.
49.
Tariq
,
Z.
,
Elkatatny
,
S. M.
,
Mahmoud
,
M. A.
,
Abdulraheem
,
A.
,
Abdelwahab
,
A. Z.
,
Woldeamanuel
,
M.
, and
Mohamed
,
I. M.
,
2017
, “
Development of New Correlation for Unconfined Compressive Strength for Carbonate Reservoir Using Artificial Intelligence Techniques
,”
51st U.S. Rock Mechanics/Geomechanics Symposium Held, San Francisco
, CA, June 25–28, Paper No.
ARMA 17-428
.
50.
Tariq
,
Z.
,
Elkatatny
,
S. M.
,
Mahmoud
,
M.
,
Abdulwahab
,
Z. A.
, and
Abdulraheem
,
A.
,
2017
, “
A New Technique to Develop Rock Strength Correlation Using Artificial Intelligence Tools
,”
SPE Reservoir Characterization and Simulation Conference and Exhibition
, Abu Dhabi, United Arab Emirates, May 8–10,
SPE
Paper No. SPE 186062.
51.
Tariq
,
A.
,
Elkatatny
,
S. A.
,
Mahmoud
,
M. A.
,
Zaki
,
A.
, and
Abdulraheem
,
A.
,
2017
, “
A New Approach to Predict Failure Parameters of Carbonate Rocks Using Artificial Intelligence Tools
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
, Dammam, Saudi Arabia, Apr. 24–27,
SPE
Paper No. SPE-187974-MS.
52.
Parapuram
,
G. K.
,
Mokhtari
,
M.
, and
Hmida
,
J. B.
,
2017
, “
Prediction and Analysis of Geomechanical Properties of the Upper Bakken Shale Utilizing Artificial Intelligence and Data Mining
,”
SPE/AAPG/SEG Unconventional Resources Technology Conference
, Austin, TX, July 24–26, Paper No.
URTEC-2692746-MS
.
53.
Buhulaigah
,
A.
,
Al-Mashhad
,
A. S.
,
Al-Arifi
,
S. A.
,
Al-Kadem
,
M. S.
, and
Al-Dabbous
,
M. S.
,
2017
, “
Multilateral Wells Evaluation Utilizing Artificial Intelligence
,”
Middle East Oil & Gas Show and Conference
, Manama, Kingdom of Bahrain, Mar. 6–9,
SPE
Paper No. SPE 183688.
54.
Solomon
,
O.
,
Adewale
,
D.
, and
Anyanwu
,
C.
,
2017
, “
Fracture Width Prediction and Loss Prevention Material Sizing in Depleted Formations Using Artificial Intelligence
,”
SPE Nigeria Annual International Conference and Exhibition
, Lagos, Nigeria, July 31–Aug. 2,
SPE
Paper No. SPE 189068.
55.
Respati
,
P. S.
,
Ardan
,
C.
, and
Alfaqih
,
M. R.
,
2016
, “
Case Study: Forecast Performance of Potential Zone Using Artificial Intelligence AI in Deltaic Mature Field
,”
International Petroleum Technology Conference
, Bangkok, Thailand, Nov. 14–16, Paper No.
IPTC-18821
.
56.
Shi
,
X.
,
Liu
,
G.
,
Jiang
,
S.
,
Chen
,
L.
, and
Yang
,
L.
,
2016
, “
Brittleness Index Prediction From Conventional Well Logs in Unconventional Reservoirs Using Artificial Intelligence
,”
International Petroleum Technology Conference
Bangkok, Thailand, Nov. 14–16, Paper No.
IPTC-18776
.
57.
Elkatatny
,
S.
,
2017
, “
New Approach to Optimize the Rate of Penetration Using Artificial Neural Network
,”
Arabian J. Sci. Eng.
, epub.
58.
Mantha
,
B.
, and
Samuel
,
R.
,
2016
, “
ROP Optimization Using Artificial Intelligence Techniques With Statistical Regression Coupling
,”
SPE Annual Technical Conference and Exhibition, Dubai
, United Arab Emirates, Sept. 26–28,
SPE
Paper No. SPE 181382.
You do not currently have access to this content.