Exhaust gas recirculation (EGR) has gained prominence as a significant method to control port fuel injection engine knock caused by high compression ratio and high intake pressure (IP). In this paper, the effect of EGR on knock intensity was investigated under various conditions which included different compression ratios (9:1, 10:1, 11:1), IPs (1.0 bar, 1.2 bar, 1.4 bar) and intake temperatures (ITs, 20 °C, 40 °C, 60 °C). The torque output being a crucial variant was also considered. The results showed that EGR effectively reduced the maximum amplitude of pressure oscillations (MAPO) and knock intensity factor (KI20). The effect of EGR on knock resistance was more significant at higher compression ratio, IP, and IT. The output torque of the engine reached a peak value with a suitable EGR ratio which also controlled the intensity of knock under different conditions.

References

1.
Haputhanthri
,
S. O.
,
Maxwell
,
T. T.
,
Fleming
,
J.
, and
Austin
,
C.
,
2015
, “
Ammonia and Gasoline Fuel Blends for Spark Ignited Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062201
.
2.
Komninos
,
N.
,
2009
, “
Modeling HCCI Combustion: Modification of a Multi-Zone Model and Comparison to Experimental Results at Varying Boost Pressure
,”
Appl. Energy
,
86
(
10
), pp.
2141
2151
.
3.
Zamboni
,
G.
, and
Capobianco
,
M.
,
2012
, “
Experimental Study on the Effects of HP and LP EGR in an Automotive Turbocharged Diesel Engine
,”
Appl. Energy
,
94
, pp.
117
128
.
4.
Chen
,
G.
,
Di
,
L.
,
Zhang
,
Q.
,
Zheng
,
Z.
, and
Zhang
,
W.
,
2015
, “
Effects of 2, 5-Dimethylfuran Fuel Properties Coupling With EGR (Exhaust Gas Recirculation) on Combustion and Emission Characteristics in Common-Rail Diesel Engines
,”
Energy
,
93
, pp.
284
293
.
5.
Hancock
,
D.
,
Fraser
,
N.
,
Jeremy
,
M.
,
Sykes
,
R.
, and
Blaxill
,
H.
,
2008
, “
A New 3 Cylinder 1.2 l Advanced Downsizing Technology Demonstrator Engine
,”
SAE
Paper No. 2008-01-0611.
6.
Petitjean
,
D.
,
Bernardini
,
L.
,
Middlemass
,
C.
, and
Shahed
,
S.
,
2004
, “
Advanced Gasoline Engine Turbo-Charging Technology for Fuel Economy Improvements
,”
SAE
Paper No. 2004-01-0988.
7.
Schwaderlapp
,
M.
,
Habermann
,
K.
, and
Yapici
,
K. I.
,
2002
, “
Variable Compression Ratio—A Design Solution for Fuel Economy Concepts
,”
SAE
Paper No. 2002-01-1103.
8.
Longbao
,
Z.
,
2007
,
Fundamentals of Internal Combustion Engine
,
Mechanic Industry Press
,
Beijing, China
.
9.
Zhen
,
X.
,
Wang
,
Y.
,
Xu
,
S.
,
Zhu
,
Y.
,
Tao
,
C.
,
Xu
,
T.
, and
Song
,
M.
,
2012
, “
The Engine Knock Analysis—An Overview
,”
Appl. Energy
,
92
, pp.
628
636
.
10.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
, New York.
11.
Duarte
,
J.
,
Garcia
,
J.
,
Jiménez
,
J.
,
Sanjuan
,
M. E.
,
Bula
,
A.
, and
González
,
J.
,
2017
, “
Auto-Ignition Control in Spark-Ignition Engines Using Internal Model Control Structure
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022201
.
12.
Pöschl
,
M.
, and
Sattelmayer
,
T.
,
2008
, “
Influence of Temperature Inhomogeneities on Knocking Combustion
,”
Combust. Flame
,
153
(
4
), pp.
562
573
.
13.
Kawahara
,
N.
, and
Tomita
,
E.
,
2009
, “
Visualization of Auto-Ignition and Pressure Wave During Knocking in a Hydrogen Spark-Ignition Engine
,”
Int. J. Hydrogen Energy
,
34
(
7
), pp.
3156
3163
.
14.
Xinghua
,
L.
,
Zhiqiang
,
F.
,
Fushui
,
L.
,
Jiangang
,
J.
, and
Ruwei
,
W.
,
2010
, “
Optical Experimental Study on Knock Characteristics of Hydrogen-Air Pre-mixture
,”
International Conference on Digital Manufacturing and Automation
(
ICDMA
), Changsha, China, Dec. 18–20, pp.
54
59
.
15.
Jayashankara
,
B.
, and
Ganesan
,
V.
,
2010
, “
Effect of Fuel Injection Timing and Intake Pressure on the Performance of a DI Diesel Engine—A Parametric Study Using CFD
,”
Energy Convers. Manage.
,
51
(
10
), pp.
1835
1848
.
16.
Attard
,
W.
,
Watson
,
H. C.
,
Konidaris
,
S.
, and
Khan
,
M. A.
,
2006
, “
Comparing the Performance and Limitations of a Downsized Formula SAE Engine in Normally Aspirated, Supercharged and Turbocharged Modes
,”
SAE
Paper No. 2006-32-0072.
17.
Guo
,
H.
,
Hosseini
,
V.
,
Neill
,
W. S.
,
Chippior
,
W. L.
, and
Dumitrescu
,
C. E.
,
2011
, “
An Experimental Study on the Effect of Hydrogen Enrichment on Diesel Fueled HCCI Combustion
,”
Int. J. Hydrogen Energy
,
36
(
21
), pp.
13820
13830
.
18.
Wei
,
H.
,
Feng
,
D.
,
Pan
,
J.
,
Shao
,
A.
, and
Pan
,
M.
,
2017
, “
Knock Characteristics of SI Engine Fueled With n-Butanol in Combination With Different EGR Rate
,”
Energy
,
118
, pp.
190
196
.
19.
Pan
,
J.
,
Shu
,
G.
, and
Wei
,
H.
,
2014
, “
Interaction of Flame Propagation and Pressure Waves During Knocking Combustion in Spark-Ignition Engines
,”
Combust. Sci. Technol.
,
186
(
2
), pp.
192
209
.
20.
Xiao
,
G.
,
Zhang
,
Y. S.
,
Lang
,
J.
, and
Jiang
,
G. J.
,
2014
, “
Experimental Study on the Effects of Intake Temperature on Combustion and Emission Characteristics of GDI Engines
,”
Trans. CSICE
,
32
, pp.
125
130
.
21.
Xiao
,
M. Y.
,
Shi
,
L.
,
Yang
,
W. L.
,
Wei
,
J. C.
, and
Deng
,
K. Y.
,
2010
, “
Simulation and Experimental Study of Performance and Knock on a Turbocharged GDI Engine
,”
Internal Combust. Engine Eng.
,
6
, pp.
22
26
.
22.
Hudson
,
C.
,
Gao
,
X.
, and
Stone
,
R.
,
2001
, “
Knock Measurement for Fuel Evaluation in Spark Ignition Engines
,”
Fuel
,
80
(
3
), pp.
395
407
.
23.
Galloni
,
E.
,
Fontana
,
G.
, and
Palmaccio
,
R.
,
2013
, “
Effects of Exhaust Gas Recycle in a Downsized Gasoline Engine
,”
Appl. Energy
,
105
, pp.
99
107
.
24.
Fontana
,
G.
, and
Galloni
,
E.
,
2010
, “
Experimental Analysis of a Spark-Ignition Engine Using Exhaust Gas Recycle at WOT Operation
,”
Appl. Energy
,
87
(
7
), pp.
2187
2193
.
25.
Wei
,
H.
,
Zhu
,
T.
,
Shu
,
G.
,
Tan
,
L.
, and
Wang
,
Y.
,
2012
, “
Gasoline Engine Exhaust Gas Recirculation—A Review
,”
Appl. Energy
,
99
, pp.
534
544
.
26.
Gupta
,
M.
,
Bell
,
S. R.
, and
Tillman
,
S. T.
,
1996
, “
An Investigation of Lean Combustion in a Natural Gas-Fueled Spark-Ignited Engine
,”
ASME J. Energy Resour. Technol.
,
118
(
2
), pp.
145
151
.
27.
Wu
,
Y.
, and
Reitz
,
R. D.
,
2015
, “
Effects of Exhaust Gas Recirculation and Boost Pressure on Reactivity Controlled Compression Ignition Engine at High Load Operating Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032210
.
28.
Zhao
,
H.
,
Peng
,
Z.
,
Williams
,
J.
, and
Ladommatos
,
N.
,
2001
, “
Understanding the Effects of Recycled Burnt Gases on the Controlled Autoignition (CAI) Combustion in Four-Stroke Gasoline Engines
,”
SAE
Paper No. 2001-01-3607.
29.
Hoepke, B., Jannsen, S., Kasseris, E., and Cheng, W.,
2012
, “
EGR Effects on Boosted SI Engine Operation and Knock Integral Correlation
,”
SAE
Paper No. 2012-01-0707.
30.
Francqueville L., and Michel J. B., 2014, “
On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load
,”
SAE
Paper No. 2014-01-2628.
31.
Kumano
,
K.
, and
Yamaoka
,
S.
,
2014
, “
Analysis of Knocking Suppression Effect of Cooled EGR in Turbo-Charged Gasoline Engine
,”
SAE
Paper No. 2014-01-1217.
32.
Grandin
,
B.
,
Ångström
,
H.-E.
,
Stålhammar
,
P.
, and
Olofsson
,
E.
,
1998
, “
Knock Suppression in a Turbocharged SI Engine by Using Cooled EGR
,”
SAE
Paper No. 982476.
33.
Brunt
,
M. F. J.
,
Christopher
,
R. P.
, and
John
,
B.
,
1998
, “
Gasoline Engine Knock Analysis Using Cylinder Pressure Data
,”
SAE
Paper No. 980896.
34.
Shu
,
G.
,
Pan
,
J.
, and
Wei
,
H.
,
2013
, “
Analysis of Onset and Severity of Knock in SI Engine Based on In-Cylinder Pressure Oscillations
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1297
1306
.
35.
Swarts
,
A. Y. A.
,
Vijoen
,
C.
, and
Coetzer
,
R.
,
2004
, “
Standard Knock Intensity Revisited: Atypical Burn Rate Characteristics Identified in the CFR Octane Rating Engine
,”
SAE
Paper No. 2004-01-1850.
36.
Konig
,
G.
, and
Sheppard
,
C. G. W.
,
1990
, “
End Gas Autoignition and Knock in a Spark Ignition Engine
,”
SAE
Paper No. 902135.
37.
Liu
,
Y.
,
Shi
,
X.
,
Deng
,
J.
,
Chen
,
Y.
,
Hu
,
M.
, and
Li
,
L.
,
2013
, “
Experimental Study on the Characteristics of Knock Under DI-HCCI Combustion Mode With Ethanol/Gasoline Mixed Fuel
,”
SAE
Paper No. 2013-01-0544.
38.
Rothamer
,
D. A.
, and
Jennings
,
J. H.
,
2012
, “
Study of the Knocking Propensity of 2,5-Dimethylfuran-Gasoline and Ethanol-Gasoline Blends
,”
Fuel
,
98
, pp.
203
212
.
You do not currently have access to this content.