This paper investigates the effectiveness of oxygen-enriched combustion process at low temperatures to avoid the unburnt carbon that remains in ash during conventional burning process. For this, thermal treatment of low-quality fuels such as olive pomace and Turkish lignite (Afsin-Elbistan) under oxygen-enriched conditions was tested in a tube furnace at temperatures between 400 and 700 °C under O2/N2 mixtures containing O2 ratios in the range of 25–50 vol %. The calorific value and the unburnt carbon content of the residues from these tests were used to investigate the combined effects of temperature and O2 concentration on unusable part of fuels. Thermal reactivity of untreated parent samples and the residues obtained from oxygen-enriched combustion was also compared based on differential thermal analysis (DTA) and derivative thermogravimetry (DTG) profiles. It was determined that oxygen-enriched conditions are able to remove the organic part of the fuels at low temperatures easily as O2 concentration increases and the oxygen-enriched conditions shifted complete burning temperature to lower values.

References

1.
Ediger, V. Ş., Berk, I., and Kösebalaban, A., 2014, “
Lignite Resources of Turkey: Geology, Reserves, and Exploration History
,”
Int. J. Coal Geol.
,
132
, pp. 13–22.
2.
Yay, A. S. E., Oral, H. V., Onay, T. T., and Yenigün, O., 2012, “
A Study on Olive Oil Mill Wastewater Management in Turkey: A Questionnaire and Experimental Approach
,”
Resour. Conserv. Recycl.
,
60
, pp. 64–71.
3.
Yanik
,
D. K.
,
2017
, “Alternative to Traditional Olive Pomace Oil Extraction Systems: Microwave-Assisted Solvent Extraction of Oil From Wet Olive Pomace,”
LWT Food Sci. Technol.
,
77
, pp.
45
51
.
4.
Wladyslaw
,
M.
,
2017
, “Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062204
.
5.
Howell
,
A.
,
Beagle
,
E.
, and
Belmont
,
E.
,
2018
, “
Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion With Sub-Bituminous Coal
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042002
.
6.
Haykiri-Acma
,
H.
,
Yaman
,
S.
, and
Kucukbayrak
,
S.
,
2013
, “Co-Combustion of Low Rank Coal/Waste Biomass Blends Using Dry Air or Oxygen,”
Appl. Therm. Eng.
,
50
(
1
), pp.
251
259
.
7.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2010
, “
Effect of Heating Rate on the non-isothermal Burning Mechanism of Sunflower Seed Shell
,”
Energy Educ. Sci. Technol. Part A
,
24
(2), pp.
113
124
.https://www.researchgate.net/publication/286134972_Effect_of_heating_rate_on_the_non-isothermal_burning_mechanism_of_sunflower_seed_shell
8.
Yaman
,
S.
, and
Küçükbayrak
,
S.
,
1997
, “Effect of Oxydesulphurization on The Combustion Characteristics of Coal,”
Thermochim. Acta
,
293
(
1–2
), pp.
109
115
.
9.
Bilen
,
M.
, and
Kizgut
,
S.
,
2016
, “Modeling of Unburned Carbon in Fly Ash and Importance of Size Parameters,”
Fuel Process. Technol.
,
143
, pp.
7
17
.
10.
Rehan
,
A.
,
Habib
,
M. A.
,
Elshafei
,
M.
, and
Alzaharnah
,
I. T.
,
2018
, “
Modeling Time Variations of Boiler Efficiency
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052001
.
11.
Suraniti
,
S. L.
,
Nsakala
,
N.
, and
Darling
,
S. L.
,
2009
, “Alstom Oxyfuel CFB Boilers: A Promising Option for CO2 Capture,”
Energy Procedia
,
1
(
1
), pp.
543
548
.
12.
Hassan
,
B.
,
Ogidiama
,
O. V.
,
Khan
,
M. N.
, and
Shamim
,
T.
,
2017
, “
Energy and Exergy Analyses of a Power Plant With Carbon Dioxide Capture Using Multistage Chemical Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032002
.
13.
Wall
,
T.
,
Liu
,
Y.
,
Spero
,
C.
,
Elliott
,
L.
,
Khare
,
S.
,
Rathnam
,
R.
,
Zeenathal
,
F.
,
Moghtaderi
,
B.
,
Buhre
,
B.
,
Sheng
,
C. D.
,
Gupta
,
R.
,
Yamada
,
T.
,
Makino
,
K.
, and
Yu
,
J. L.
,
2009
, “An Overview on Oxyfuel Coal Combustion–State of the Art Research and Technology Development,”
Chem. Eng. Res. Des.
,
87
(
8
), pp.
1003
1016
.
14.
Wang
,
H.
,
Zheng
,
Z. M.
,
Yang
,
L.
,
Liu
,
X. L.
,
Guo
,
S.
, and
Wu
,
S. H.
,
2015
, “Experimental Investigation on Ash Deposition of a Bituminous Coal During Oxy-Fuel Combustion in a Bench-Scale Fluidized Bed,”
Fuel Process. Technol.
,
132
, pp.
24
30
.
15.
Bejarano
,
P. A.
, and
Levendis
,
Y. A.
,
2008
, “Single-Coal-Particle Combustion in O2/N2 and O2/CO2 Environments,”
Combust. Flame
,
153
(
1–2
), pp.
270
287
.
16.
Arias
,
B.
,
Pevida
,
C.
,
Rubiera
,
F.
, and
Pis
,
J. J.
,
2008
, “Effect of Biomass Blending on Coal Ignition and Burnout During Oxy-Fuel Combustion,”
Fuel
,
87
(
12
), pp.
2753
2759
.
17.
Cheng
,
X. Y.
,
Han
,
K. X.
,
Huang
,
Z. Y.
,
Wang
,
Z. H.
, and
Energy Res
,
J.
,
2017
, “
Ash Fusibility Based on Modes of Occurrence and High-Temperature Behaviors of Mineral Matter in Coals
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022003
.
18.
Madejski
,
P.
,
Janda
,
T.
,
Taler
,
J.
,
Nabaglo
,
D.
,
Wezik
,
R.
, and
Mazur
,
M.
,
2018
, “
Analysis of Fouling Degree of Individual Heating Surfaces in a Pulverized Coal Fired Boiler
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032003
.
19.
Murphy
,
J. J.
, and
Shaddix
,
C. R.
,
2006
, “Combustion Kinetics of Coal Chars in Oxygen-Enriched Environments,”
Combust. Flame
,
144
(
4
), pp.
710
729
.
20.
Saito
,
M.
,
Sakadata
,
M.
,
Sato
,
M.
,
Soutome
,
T.
, and
Murata
,
H.
,
1991
, “Combustion Rates of Pulverized Coal Particles in High-Temperature/High-Oxygen Concentration Atmosphere,”
Combust. Flame
,
87
(
1
), pp.
1
12
.
21.
Haykiri-Acma
,
H.
,
Baykan
,
A.
, and
Yaman
,
S.
,
2013
, “Are Medium range Temperatures in Drop Tube Furnace Really Ineffective?,”
Fuel
,
105
, pp.
338
344
.
22.
Varhegyi
,
G.
,
Szabo
,
P.
,
Jakab
,
E.
, and
Till
,
F.
,
1996
, “Mathematical Modeling of Char Reactivity in Ar-O2 and CO2-O2,”
Energy Fuels
,
10
(
6
), pp.
1208
1214
.
23.
Varhegy
,
G.
, and
Till
,
F.
,
1999
, “Comparison of Temperature-Programmed Char Combustion in CO2-O2 and Ar-O2 Mixtures at Elevated Pressure,”
Energy Fuels
,
13
(
2
), pp.
539
540
.
24.
Konist
,
A.
,
Valtsev
,
A.
,
Loo
,
L.
,
Pihu
,
T.
,
Liira
,
M.
, and
Kirsimäe
,
K.
,
2015
, “Influence of Oxy-Fuel Combustion of Ca-Rich Oil Shale Fuel on Carbonate Stability and Ash Composition,”
Fuel
,
139
, pp.
671
677
.
25.
Suriyawong
,
A.
,
Gamble
,
M.
,
Lee
,
M. H.
,
Axelbaum
,
R.
, and
Biswas
,
P.
,
2006
, “Submicrometer Particle Formation and Mercury Speciation Under O2–CO2 Coal Combustion,”
Energy Fuels
,
20
(
6
), pp.
2357
2363
.
26.
Sheng
,
C.
, and
Li
,
Y.
,
2008
, “Experimental Study of Ash Formation During Pulverized Coal Combustion in O2/CO2 Mixtures,”
Fuel
,
87
(
7
), pp.
1297
1305
.
27.
Sheng
,
C.
,
Lu
,
Y.
,
Gao
,
X.
, and
Yao
,
H.
,
2007
, “Fine Ash Formation During Pulverized Coal Combustion –A Comparison of O2/CO2 Combustion versus Air Combustion,”
Energy Fuels
,
21
(
2
), pp.
435
440
.
28.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2008
, “Combinations of Synergistic Interactions and Additive Behavior During the Co-Oxidation of Chars From Lignite and Biomass,”
Fuel Process. Technol.
,
89
(
2
), pp.
176
182
.
29.
Haykiri-Acma
,
H.
,
Yaman
,
S.
,
Küçükbayrak
,
S.
, and
Okutan
,
H.
,
2006
, “
Investigation of the Combustion Characteristics of Zonguldak Bituminous Coal Using DTA and DTG
,”
Energy Sources
,
28
(
2
), pp.
135
147
.
30.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2008
, “Thermal Reactivity of Rapeseed (Brassica napus L.) Under Different Gas Atmospheres,”
Bioresour. Technol.
,
99
(
2
), pp.
237
242
.
31.
Belichmeier
,
J. A.
,
Cammenga
,
H. K.
,
Shneider
,
P. B.
, and
Steer
,
A. G.
,
1998
, “A Simple Method for Determining Activation Energies of Organic Reactions From DSC Curves,”
Thermochim. Acta
,
310
(
1–2
), pp.
147
151
.
You do not currently have access to this content.