Enhancing a combustion system requires increased combustion efficiency, fuel savings, and reduction of combustion emissions. In this paper, the combustion of CH4 in the combustor of an industrial gas turbine is studied and NO and CO formation/emission is simulated numerically. The objective of the current work is to investigate the influence of combustive parameters and varying the percentage of distributed air flow rate via burning, recirculation, and dilution zone on the reactive flow characteristics, NOx and CO emissions. The governing equations of mass, momentum, energy, turbulence quantities Renormalized group (RNG) (k–ε), mixture fraction and its variance are solved by the finite volume method. The formation and emission of NOx is numerically simulated in a postprocessing fashion, due to the low concentration of the pollutants as compared to the main combustion species. The present work focuses on different physical mechanisms of NOx formation. The thermal-NOx and prompt-NOx mechanism are considered for modeling the NOx source term in the transport equation. Results show that in a gaseous-fueled combustor, the thermal NOx is the dominant mechanism for NOx formation. Particularly, the simulation provides more insight into the correlation between the maximum combustor temperature, exhaust average temperatures, and the thermal NO concentration. Results indicate that the exhaust temperature and NOx concentration decrease while the excess air factor increases. Moreover, results demonstrate that as the combustion air temperature increases, the combustor temperature increases and the thermal NOx concentration increases dramatically. Furthermore, results demonstrate that the NO concentration at the combustor exit is at maximum value in a swirl angle of 55 deg and a gradual rise in the NOx concentration is detected as the combustion fuel temperature increases. In addition, results demonstrate that the air distribution of the first case at laboratory conditions is optimal where the mass fractions of NO and CO are minimum.
Skip Nav Destination
Article navigation
January 2019
Research-Article
Effect of Operational Parameters on Combustion and Emissions in an Industrial Gas Turbine Combustor
Mohsen D. Emami,
Mohsen D. Emami
Department of Mechanical Engineering,
Isfahan University of Technology,
Isfahan 84156-8311, Iran
e-mail: mohsen@cc.iut.ac.ir
Isfahan University of Technology,
Isfahan 84156-8311, Iran
e-mail: mohsen@cc.iut.ac.ir
Search for other works by this author on:
Hamidreza Shahbazian,
Hamidreza Shahbazian
Department of Mechanical Engineering,
Isfahan University of Technology,
Tehran 1476655961, Iran
e-mails: Hamidreza.Shahbazian@energy.lth.se;
Hr_Shahbazian@me.iut.ac.ir
Isfahan University of Technology,
Tehran 1476655961, Iran
e-mails: Hamidreza.Shahbazian@energy.lth.se;
Hr_Shahbazian@me.iut.ac.ir
Search for other works by this author on:
Bengt Sunden
Bengt Sunden
Search for other works by this author on:
Mohsen D. Emami
Department of Mechanical Engineering,
Isfahan University of Technology,
Isfahan 84156-8311, Iran
e-mail: mohsen@cc.iut.ac.ir
Isfahan University of Technology,
Isfahan 84156-8311, Iran
e-mail: mohsen@cc.iut.ac.ir
Hamidreza Shahbazian
Department of Mechanical Engineering,
Isfahan University of Technology,
Tehran 1476655961, Iran
e-mails: Hamidreza.Shahbazian@energy.lth.se;
Hr_Shahbazian@me.iut.ac.ir
Isfahan University of Technology,
Tehran 1476655961, Iran
e-mails: Hamidreza.Shahbazian@energy.lth.se;
Hr_Shahbazian@me.iut.ac.ir
Bengt Sunden
1Corresponding author.
Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received April 6, 2018; final manuscript received May 30, 2018; published online July 23, 2018. Editor: Hameed Metghalchi.
J. Energy Resour. Technol. Jan 2019, 141(1): 012202 (14 pages)
Published Online: July 23, 2018
Article history
Received:
April 6, 2018
Revised:
May 30, 2018
Citation
Emami, M. D., Shahbazian, H., and Sunden, B. (July 23, 2018). "Effect of Operational Parameters on Combustion and Emissions in an Industrial Gas Turbine Combustor." ASME. J. Energy Resour. Technol. January 2019; 141(1): 012202. https://doi.org/10.1115/1.4040532
Download citation file:
Get Email Alerts
Related Articles
Dual-Location Fuel Injection Effects on Emissions and NO*/OH* Chemiluminescence in a High Intensity Combustor
J. Energy Resour. Technol (July,2016)
Evaluation of Fuel Injection Strategies for Biodiesel-Fueled CRDI Engine Development and Particulate Studies
J. Energy Resour. Technol (October,2018)
Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging
J. Energy Resour. Technol (January,2016)
In-Furnace Sulfur Capture by Cofiring Coal With Alkali-Based Sorbents
J. Energy Resour. Technol (July,2017)
Related Proceedings Papers
Related Chapters
Influence of Aethylether on Combustion and Emission Characteristics of Dieselbiodiesel Mixture Fuel
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Basics of CANDU Reactor Physics
Fundamentals of CANDU Reactor Physics
Introduction
Nuclear Reactor Thermal-Hydraulics: Past, Present and Future