Proper well placement can improve the oil recovery and economic benefits during oilfield development. Due to the nonlinear and complex properties of well placement optimization, an effective optimization algorithm is required. In this paper, cat swarm optimization (CSO) algorithm is applied to optimize well placement for maximum net present value (NPV). CSO algorithm, a heuristic algorithm that mimics the behavior of a swarm of cats, has characteristics of flexibility, fast convergence, and high robustness. Oilfield development constraints are taken into account during well placement optimization process. Rejection method, repair method, static penalization method, dynamic penalization method and adapt penalization method are, respectively, applied to handle well placement constraints and then the optimal constraint handling method is obtained. Besides, we compare the CSO algorithm optimization performance with genetic algorithm (GA) and differential evolution (DE) algorithm. With the selected constraint handling method, CSO, GA, and DE algorithms are applied to solve well placement optimization problem for a two-dimensional (2D) conceptual model and a three-dimensional (3D) semisynthetic reservoir. Results demonstrate that CSO algorithm outperforms GA and DE algorithm. The proposed CSO algorithm can effectively solve the constrained well placement optimization problem with adapt penalization method.

References

1.
Zandvliet
,
M.
,
Handels
,
M.
,
van Essen
,
G.
,
Brouwer
,
R.
, and
Jansen
,
J.
,
2008
, “
Adjoint-Based Well-Placement Optimization Under Production Constraints
,”
SPE J.
,
13
(
4
), pp.
392
399
.
2.
Li
,
L.
, and
Jafarpour
,
B.
,
2012
, “
A Variable-Control Well Placement Optimization for Improved Reservoir Development
,”
Comput. Geosci.
,
16
(
4
), pp.
871
889
.
3.
Bangerth
,
W.
,
Klie
,
H.
,
Wheeler
,
M.
,
Stoffa
,
P.
, and
Sen
,
M.
,
2006
, “
On Optimization Algorithms for the Reservoir Oil Well Placement Problem
,”
Comput. Geosci.
,
10
(
3
), pp.
303
319
.
4.
Pajonk
,
O.
,
Schulze-riegert
,
R.
,
Krosche
,
M.
,
Hassan
,
M.
, and
Nwakile
,
M.
,
2011
, “
Ensemble-Based Water Flooding Optimization Applied to Mature Fields
,”
SPE Middle East Oil and Gas Show and Conference
, Bahrain, Manama, Sept. 25–28,
SPE
Paper No. SPE-142621-MS.
5.
He
,
Y.
,
Cheng
,
S.
,
Li
,
L.
,
Mu
,
G.
,
Zhang
,
T.
,
Xu
,
H.
,
Qin
,
J.
, and
Yu
,
H.
,
2017
, “
Waterflood Direction and Front Characterization With Multiple Methods: A Case Study in Changqing Oilfield, China
,”
SPE Reservoir Eval. Eng.
,
20
(
3
), pp.
708
725
.
6.
Bostan
,
M.
,
Kharrat
,
R.
, and
Ghorbani
,
D.
,
2011
, “
Implementing a Novel Method for Injection Efficiency Optimization in Water Flooding Process: Case Study
,”
SPE Production and Operations Symposium
, Oklahoma City, OK, Mar. 27–29,
SPE
Paper No. SPE-142133-MS.
7.
Seales
,
M.
,
Ertekin
,
T.
, and
Wang
,
J.
,
2017
, “
Recovery Efficiency of Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
8.
He
,
Y.
,
Cheng
,
S.
,
Li
,
S.
,
Huang
,
Y.
,
Qin
,
J.
,
Hu
,
L.
, and
Yu
,
H.
,
2017
, “
A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir
,”
SPE J.
,
22
(
3
), pp.
924
939
.
9.
McClure
,
M.
,
Babazadeh
,
M.
,
Shiozawa
,
S.
, and
Huang
,
J.
,
2016
, “
Fully Coupled Hydromechanical Simulation of Hydraulic Fracturing in 3D Discrete-Fracture Networks
,”
SPE J.
,
21
(
4
), pp.
1302
1320
.
10.
Chang
,
O.
,
Kinzel
,
M.
,
Dilmore
,
R.
, and
Wang
,
J.
,
2018
, “
Physics of Proppant Transport Through Hydraulic Fracture Network
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032912
.
11.
Niu
,
G.
,
Sun
,
J.
,
Parsegov
,
S.
, and
Schechter
,
D.
,
2017
, “
Integration of Core Analysis, Pumping Schedule and Microseismicity to Reduce Uncertainties of Production Performance of Complex Fracture Networks for Multi-Stage Hydraulically Fractured Reservoirs
,”
SPE Eastern Regional Meeting
, Lexington, KY, Oct. 4–6,
SPE
Paper No. SPE-187524-MS.
12.
Guo
,
J.
,
Luo
,
B.
,
Lu
,
C.
,
Lai
,
J.
, and
Ren
,
J.
,
2017
, “
Numerical Investigation of Hydraulic Fracture Propagation in a Layered Reservoir Using the Cohesive Zone Method
,”
Eng. Fract. Mech.
,
186
, pp.
195
207
.
13.
Rui
,
Z.
,
Guo
,
T.
,
Feng
,
Q.
,
Qu
,
Z.
,
Qi
,
N.
, and
Gong
,
F.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
,
165
, pp.
627
639
.
14.
Zeng
,
J.
,
Wang
,
X.
,
Guo
,
J.
, and
Zeng
,
F.
,
2017
, “
Composite Linear Flow Model for Multi-Fractured Horizontal Wells in Heterogeneous Shale Reservoir
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
527
548
.
15.
He
,
Y.
,
Cheng
,
S.
,
Rui
,
Z.
,
Qin
,
J.
,
Fu
,
L.
,
Shi
,
J.
,
Wang
,
Y.
,
Li
,
D.
,
Patil
,
S.
,
Yu
,
H.
, and
Lu
,
J.
,
2018
, “
An Improved Rate-Transient Analysis Model of Multi-Fractured Horizontal Wells With Non-Uniform Hydraulic Fracture Properties
,”
Energies
,
11
(
2
), p.
393
.
16.
Rui
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
17.
Kamel
,
M.
,
Elkatatny
,
S.
,
Mysorewala
,
M.
,
Al-Majed
,
A.
, and
Elshafei
,
M.
,
2018
, “
Adaptive and Real-Time Optimal Control of Stick–Slip and Bit Wear in Autonomous Rotary Steerable Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032908
.
18.
Nascimento
,
A.
,
Elmgerbi
,
A.
,
Roohi
,
A.
,
Prohaska
,
M.
,
Thonhauser
,
G.
,
Gonçalves
,
J.
, and
Mathias
,
M.
,
2017
, “
Reverse Engineering: A New Well Monitoring and Analysis Methodology Approaching Playing-Back Drill-Rate Tests in Real-Time for Drilling Optimization
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012902
.
19.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Wang
,
Y.
,
Chen
,
Z.
, and
Yu
,
H.
,
2018
, “
Pressure-Transient Behavior of Multisegment Horizontal Wells With Nonuniform Production: Theory and Case Study
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
093101
.
20.
Tan
,
Y.
,
Li
,
H.
,
Zhou
,
X.
,
Jiang
,
B.
,
Wang
,
Y.
, and
Zhang
,
N.
,
2018
, “
A Semi-Analytical Model for Predicting Horizontal Well Performances in Fractured Gas Reservoirs With Bottom-Water and Different Fracture Intensities
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102905
.
21.
Luo
,
S.
, and
Kelkar
,
M.
,
2012
, “
Infill Drilling Potential in Tight Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013401
.
22.
Chen
,
H.
,
Feng
,
Q.
,
Zhang
,
X.
,
Wang
,
S.
,
Zhou
,
W.
, and
Geng
,
Y.
,
2017
, “
Well Placement Optimization Using an Analytical Formula-Based Objective Function and Cat Swarm Optimization Algorithm
,”
J. Pet. Sci. Eng.
,
157
, pp.
1067
1083
.
23.
Güyaguler
,
B.
, and
Horne
,
R.
,
2000
, “
Optimization of Well Placement
,”
ASME J. Energy Resour. Technol.
,
122
(
2
), pp.
64
70
.
24.
Siavashi
,
M.
,
Tehrani
,
M. R.
, and
Nakhaee
,
A.
,
2016
, “
Efficient Particle Swarm Optimization of Well Placement to Enhance Oil Recovery Using a Novel Streamline-Based Objective Function
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), pp.
77
78
.
25.
Bouzarkouna
,
Z.
,
Ding
,
D. Y.
, and
Auger
,
A.
,
2012
, “
Well Placement Optimization With the Covariance Matrix Adaptation Evolution Strategy and Meta-Models
,”
Comput. Geosci.
,
16
(
1
), pp.
75
92
.
26.
Chen
,
H.
,
Feng
,
Q.
,
Zhang
,
X.
,
Zhou
,
W.
, and
Geng
,
Y.
,
2018
, “
A Prediction Formula for Ratio of Injection–Production Control Area in Triangle Well Pattern
,”
J. Pet. Explor. Prod. Technol.
,
8
(
1
), pp.
195
203
.
27.
Prasun
,
S.
, and
Wojtanowicz
,
A.
,
2018
, “
Determination and Implication of Ultimate Water Cut in Well-Spacing Design for Developed Reservoirs With Water Coning
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082902
.
28.
Wang
,
S.
,
Feng
,
Q.
,
Javadpour
,
F.
,
Xia
,
T.
, and
Li
,
Z.
,
2015
, “
Oil Adsorption in Shale Nanopores and Its Effect on Recoverable Oil-in-Place
,”
Int. J. Coal Geol.
,
147–148
, pp.
9
24
.
29.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Lu
,
J.
,
Chen
,
G.
,
Ling
,
K.
, and
Patil
,
S.
,
2018
, “
A Quantitative Framework for Evaluating Unconventional Well Development
,”
J. Pet. Sci. Eng.
,
166
, pp.
900
905
.
30.
Wang
,
S.
,
Feng
,
Q.
,
Zha
,
M.
,
Javadpour
,
F.
, and
Hu
,
Q.
,
2017
, “
Supercritical Methane Diffusion in Shale Nanopores: Effects of Pressure, Mineral Types, and Moisture Content
,”
Energy & Fuels
,
32
(
1
), pp.
169
180
.https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.7b02892
31.
Qin
,
J.
,
Liu
,
Y.
,
Feng
,
Y.
,
Ding
,
Y.
,
Liu
,
L.
, and
He
,
Y.
,
2017
, “
New Well Pattern Optimization Methodology in Mature Low-Permeability Anisotropic Reservoirs
,”
J. Geophys. Eng.
,
15
(
1
), pp.
93
105
.http://iopscience.iop.org/article/10.1088/1742-2140/aa83e8/meta
32.
Siavashi
,
M.
, and
Doranehgard
,
M.
,
2017
, “
Particle Swarm Optimization of Thermal Enhanced Oil Recovery From Oilfields With Temperature Control
,”
Appl. Therm. Eng.
,
123
, pp.
658
669
.
33.
Azamipour
,
V.
,
Assareh
,
M.
,
Dehghani
,
M.
, and
Mittermeir
,
G.
,
2017
, “
An Efficient Workflow for Production Allocation During Water Flooding
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032902
.
34.
Sayyafzadeh
,
M.
, and
Keshavarz
,
A.
,
2016
, “
Optimisation of Gas Mixture Injection for Enhanced Coalbed Methane Recovery Using a Parallel Genetic Algorithm
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
942
953
.
35.
Siavashi
,
M.
,
Garusi
,
H.
, and
Derakhshan
,
S.
,
2017
, “
Numerical Simulation and Optimization of Steam-Assisted Gravity Drainage With Temperature, Rate, and Well Distance Control Using an Efficient Hybrid Optimization Technique
,”
Numer. Heat Transfer A-Appl.
,
72
(
9
), pp.
721
744
.
36.
Akhondzadeh
,
H.
,
Keshavarz
,
A.
,
Sayyafzadeh
,
M.
, and
Kalantariasl
,
A.
,
2018
, “
Investigating the Relative Impact of Key Reservoir Parameters on Performance of Coalbed Methane Reservoirs by an Efficient Statistical Approach
,”
J. Nat. Gas Sci. Eng.
,
53
, pp.
416
428
.
37.
Kasaei
,
M.
,
Gandomkar
,
M.
, and
Nikoukar
,
J.
,
2017
, “
Optimal Operational Scheduling of Renewable Energy Sources Using Teaching-Learning Based Optimization Algorithm by Virtual Power Plant
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
032908
.
38.
Le Van
,
S.
, and
Chon
,
B.
,
2018
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032906
.
39.
Ramezanpour
,
M.
, and
Siavashi
,
M.
,
2018
, “
Application of SiO2-Water Nanofluid to Enhance Oil Recovery
,”
J. Therm. Anal. Calorim.
, (epub).
40.
Güyaguler
,
B.
, and
Horne
,
R.
,
2004
, “
Uncertainty Assessment of Well Placement Optimization
,”
SPE J.
,
7
(
1
), pp.
24
32
.
41.
Jesmani
,
M.
,
Bellout
,
M.
,
Hanea
,
R.
, and
Foss
,
B.
,
2016
, “
Well Placement Optimization Subject to Realistic Field Development Constraints
,”
Comput. Geosci.
,
20
(
6
), pp.
1185
1209
.
42.
Feng
,
Q.
,
Chen
,
H.
,
Wang
,
X.
,
Wang
,
S.
,
Wang
,
Z.
,
Yang
,
Y.
, and
Bing
,
S.
,
2016
, “
Well Control Optimization Considering Formation Damage Caused by Suspended Particles in Injected Water
,”
J. Nat. Gas. Sci. Eng.
,
35
, pp.
21
32
.
43.
Nwankwor
,
E.
,
Nagar
,
A.
, and
Reid
,
D.
,
2013
, “
Hybrid Differential Evolution and Particle Swarm Optimization for Optimal Well Placement
,”
Comput. Geosci.
,
17
(
2
), pp.
1
20
.
44.
Ma
,
Y.
,
Xie
,
K.
,
Dong
,
J.
,
Tai
,
H.
, and
Hu
,
B.
,
2018
, “
Optimal Generation Maintenance Schedule for Bundled Wind-Thermal Generation System
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
014501
.
45.
Fonseca
,
R.
,
Chen
,
B.
,
Jansen
,
J.
, and
Reynolds
,
A.
,
2017
, “
A Stochastic Simplex Approximate Gradient (StoSAG) for Optimization Under Uncertainty
,”
Int. J. Numer. Meth. Eng.
,
109
(
13
), pp.
1756
1776
.
46.
Chen
,
B.
,
Fonseca
,
R.
,
Leeuwenburgh
,
O.
, and
Reynolds
,
A.
,
2017
, “
Minimizing the Risk in the Robust Life-Cycle Production Optimization Using Stochastic Simplex Approximate Gradient
,”
J. Pet. Sci. Eng.
,
153
, pp.
331
344
.
47.
Chen
,
Y.
,
Oliver
,
D.
, and
Zhang
,
D.
,
2009
, “
Efficient Ensemble-Based Closed-Loop Production Optimization
,”
SPE J.
,
14
(
4
), pp.
634
645
.
48.
Sayyafzadeh
,
M.
,
2015
, “
A Self-Adaptive Surrogate-Assisted Evolutionary Algorithm for Well Placement Optimization Problems
,”
SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition
, Bali, Indonesia, Oct. 20–22,
SPE
Paper No. SPE-176468-MS.
49.
Sayyafzadeh
,
M.
,
2017
, “
Reducing the Computation Time of Well Placement Optimisation Problems Using Self-Adaptive Metamodeling
,”
J. Pet. Sci. Eng.
,
151
, pp.
143
158
.
50.
Guo
,
L.
,
Meng
,
Z.
,
Sun
,
Y.
, and
Wang
,
L.
,
2016
, “
Parameter Identification and Sensitivity Analysis of Solar Cell Models With Cat Swarm Optimization Algorithm
,”
Energy Convers. Manage.
,
108
, pp.
520
528
.
51.
Chu
,
S.
,
Tsai
,
P.
, and
Pan
,
J.
,
2006
,
Cat Swarm Optimization
, Lecture Notes in Computer Science, Vol.
6
, Springer, Heidelberg, pp.
854
858
.
52.
Saha
,
S. K.
,
Ghoshal
,
S. P.
,
Kar
,
R.
, and
Mandal
,
D.
,
2013
, “
Cat Swarm Optimization Algorithm for Optimal Linear Phase FIR Filter Design
,”
ISA Trans.
,
52
(
6
), pp.
781
794
.
53.
Zhang
,
Y.
,
Lu
,
R.
,
Forouzanfar
,
F.
, and
Reynolds
,
A.
,
2017
, “
Well Placement and Control Optimization for WAG/SAG Processes Using Ensemble-Based Method
,”
Comput. Chem. Eng.
,
101
, pp.
193
209
.
54.
Liu
,
X.
, and
Reynolds
,
A.
,
2016
, “
Augmented Lagrangian Method for Maximizing Expectation and Minimizing Risk for Optimal Well-Control Problems With Nonlinear Constraints
,”
SPE J.
,
21
(
5
), pp.
1830
1842
.
55.
Chen
,
B.
, and
Reynolds
,
A.
,
2018
, “
CO2 Water-Alternating-Gas Injection for Enhanced Oil Recovery: Optimal Well Controls and Half-Cycle Lengths
,”
Comput. Chem. Eng.
,
113
, pp.
44
56
.
56.
Isebor
,
O.
,
2009
,
Constrained Production Optimization With an Emphasis on Derivative-Free Methods
,
Stanford University
, Stanford, CA.
57.
Chen
,
B.
, and
Reynolds
,
A.
,
2015
, “
Ensemble-Based Optimization of the WAG Injection Process
,”
SPE Reservoir Simulation Symposium
, Houston, TX, Feb. 23–25,
SPE
Paper No. SPE 173217-MS.
58.
Yeten
,
B.
,
Durlofsky
,
L.
, and
Aziz
,
K.
,
2003
, “
Optimization of Nonconventional Well Type, Location, and Trajectory
,”
SPE J.
,
8
(
3
), pp.
200
210
.
59.
Chang
,
Y.
,
Bouzarkouna
,
Z.
, and
Devegowda
,
D.
,
2015
, “
Multi-Objective Optimization for Rapid and Robust Optimal Oilfield Development Under Geological Uncertainty
,”
Comput. Geosci.
,
19
(
4
), pp.
933
950
.
60.
Jorge
,
H.
, and
Sampaio
,
J.
,
2017
, “
Designing Three-Dimensional Directional Well Trajectories Using Bézier Curves
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032901
.
61.
Chen
,
B.
, and
Reynolds
,
A.
,
2017
, “
Optimal Control of ICV's and Well Operating Conditions for the Water-Alternating-Gas Injection Process
,”
J. Pet. Sci. Eng.
,
149
, pp.
623
640
.
62.
Michalewicz
,
Z.
,
1995
, “
A Survey of Constraint Handling Techniques in Evolutionary Computation Methods
,”
Evol. Program.
,
4
, pp.
135
155
.
63.
Hadj-Alouane
,
A.
, and
Bean
,
J.
,
1997
, “
A Genetic Algorithm for the Multiple-Choice Integer Program
,”
Oper. Res.
,
45
(
1
), pp.
92
101
.
64.
Floris
,
F.
,
Bush
,
M.
,
Cuypers
,
M.
,
Roggero
,
F.
, and
Syversveen
,
A.
,
2001
, “
Methods for Quantifying the Uncertainty of Production Forecasts: A Comparative Study
,”
Pet. Geosci.
,
7
(
S
), pp.
S87
S96
.
65.
GeoQuest
,
S.
,
2001
, “
ECLIPSE Reference Manual 2010.1
,”
Schlumberger
,
Houston, TX
.
66.
Christie
,
M.
, and
Blunt
,
M.
,
2001
, “
Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques
,”
SPE Reservoir Eval. Eng.
,
4
(
4
), pp.
308
317
.
You do not currently have access to this content.