Abstract

In this paper, experimental investigation on two oil-soluble drag-reducing agents (DRAs) were carried out in stirred vessel by standard six-blade Rushton, based on the application of particle image velocimeter (PIV). Two DRAs (1# and 2#) with different concentrations from 3 ppm to 50 ppm were added into diesel, respectively, and speed of impeller speed was set 400 rpm. Flow field characteristics including turbulence intensity, turbulent kinetic energy (TKE), and energy dissipation rate (EDR) influenced by those additives in stirred vessel were studied. It was found that inhibition effect of turbulence intensity of the two DRAs is not obvious with concentration below 10 ppm. However, when concentration is above 10 ppm, turbulence inhibition effect becomes more obvious. Under low concentration, 1# has better turbulence inhibition effect in the area near impeller, while 2# has better turbulence inhibition effect under high concentration. When the two DRAs are under the same concentration of 50 ppm, turbulent flow energy and energy dissipation rate are obviously reduced.

References

1.
Burger
,
E. D.
,
Munk
,
W. R.
, and
Wahl
,
H. A.
,
1982
, “
Flow Increase in the Trans Alaska Pipeline Through Use of a Polymeric Drag-Reducing Additive
,”
J. Pet. Technol.
,
34
(
2
), pp.
377
386
. 10.2118/9419-PA
2.
Martin
,
J. R.
, and
Shapella
,
B. D.
,
2003
, “
The Effect of Solvent Solubility Parameter on Turbulent Flow Drag Reduction in Polyisobutylene Solutions
,”
Exp. Fluids
,
34
(
5
), pp.
535
539
. 10.1007/s00348-002-0564-y
3.
Kang
,
C.
,
Vancko
,
R. M.
,
Green
,
A. S.
,
Kerr
,
H.
, and
Jepson
,
W. P.
,
1998
, “
Effect of Drag-Reducing Agents in Multiphase Flow Pipelines
,”
ASME J. Energy Resour. Technol.
,
120
(
1
), pp.
15
19
. 10.1115/1.2795002
4.
Kang
,
C.
,
Jepson
,
W. P.
, and
Gopal
,
M.
,
1999
, “
Effect of Drag-Reducing Agent on Slug Characteristics in Multiphase Flow in Inclined Pipes
,”
ASME J. Energy Resour. Technol.
,
121
(
2
), pp.
86
90
. 10.1115/1.2795073
5.
Fernandes
,
R. L. J.
,
Fleck
,
B. A.
,
Heidrick
,
T. R.
,
Torres
,
L.
, and
Rodriguez
,
M. G.
,
2009
, “
Experimental Study of DRA for Vertical Two-Phase Annular Flow
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
023002
. 10.1115/1.3120299
6.
Kutlu
,
B.
,
Takach
,
N.
,
Ozbayoglu
,
E. M.
,
Miska
,
S. Z.
,
Yu
,
M.
, and
Mata
,
C.
,
2017
, “
Drilling Fluid Density and Hydraulic Drag Reduction With Glass Bubble Additives
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042904
. 10.1115/1.4036540
7.
Sun
,
Y.
, “
Comparative Analysis of Drag Reduction Effect of Drag Reducing Agent Under Long-Distance Pipeline Gasoline and Diesel
,”
Chem. Manage.
,
2017
(
1
), p.
188
.
8.
Toms
,
B. A.
,
1948
, “
Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers
,”
Proceedings of the International Congress of Rheology
,
Holland, North-Holland, Amsterdam
(Section II), pp.
135
141
.
9.
Virk
,
P. S.
,
1975
, “
Drag Reduction Fundamentals
,”
AIChE J.
,
21
(
4
), pp.
625
656
. 10.1002/aic.690210402
10.
Lumley
,
J. L.
,
1969
, “
Drag Reduction by Additives
,”
Annu. Rev. Fluid Mech.
,
1
(
1
), pp.
367
384
. 10.1146/annurev.fl.01.010169.002055
11.
de Gennes
,
P. G.
, and
Deutsch
,
J. M.
,
1991
, “
Introduction to Polymer Dynamics
,”
Phys. Today
,
44
(
10
), pp.
113
114
. 10.1063/1.2810290
12.
Virk P
,
S.
,
Mickley H
,
S.
, and
Smith K
,
A.
,
1970
, “
The Ultimate Asymptote and Mean Flow Structure in Toms’ Phenomenon
,”
ASME J. Appl. Mech.
,
37
(
2
), pp.
488
493
. 10.1115/1.3408532
13.
White
,
C. M.
, and
Mungal
,
M. G.
,
2008
, “
Mechanics and Prediction of Turbulent Drag Reduction With Polymer Additives
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
235
256
. 10.1146/annurev.fluid.40.111406.102156
14.
Soares
,
E. J.
,
2020
, “
Review of Mechanical Degradation and De-aggregation of Drag Reducing Polymers in Turbulent Flows
,”
J. Non-Newtonian Fluid Mech.
,
276
, p.
104225
. 10.1016/j.jnnfm.2019.104225
15.
Benzi
,
R.
, and
Ching
,
E. S. C.
,
2018
, “
Polymers in Fluid Flows
,”
Annu. Rev. Condens. Matter Phys.
,
9
(
1
), pp.
163
181
. 10.1146/annurev-conmatphys-033117-053913
16.
Ptasinski
,
P. K.
,
Nieuwstadt
,
F. T. M.
,
van den Brule
,
B. H. A. A.
, and
Hulsen
,
M. A.
,
2001
, “
Experiments in Turbulent Pipe Flow With Polymer Additives at Maximum Drag Reduction
,”
Flow Turbul. Combust.
,
66
(
2
), pp.
159
182
. 10.1023/A:1017985826227
17.
Warholic
,
M. D.
,
Heist
,
D. K.
,
Katcher
,
M.
, and
Hanratty
,
T. J.
,
2001
, “
A Study With Particle-Image Velocimetry of the Influence of Drag-Reducing Polymers on the Structure of Turbulence
,”
Exp. Fluids
,
31
(
5
), pp.
474
483
. 10.1007/s003480100288
18.
Owolabi
,
B. E.
,
Dennis
,
D. J. C.
, and
Poole
,
R. J.
,
2017
, “
Turbulent Drag Reduction by Polymer Additives in Parallel-Shear Flows
,”
J. Fluid Mech.
,
827
. 10.1017/jfm.2017.544
19.
Alsurakji
,
I. H.
,
Al-Sarkhi
,
A.
,
Habib
,
M.
, and
Badr
,
H. M.
,
2018
, “
An Experimental Study on the Performance of Drag-Reducing Polymers in Single- and Multiphase Horizontal Flow Using Particle Image Velocimetry
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052005
. 10.1115/1.4038847
20.
Lee
,
S. J.
, and
Zaki
,
T. A.
,
2017
, “
Simulations of Natural Transition in Viscoelastic Channel Flow
,”
J. Fluid Mech.
,
820
, pp.
232
262
. 10.1017/jfm.2017.198
21.
Pereira
,
A. S.
,
Mompean
,
G.
,
Thais
,
L.
, and
Thompson
,
R. L.
,
2017
, “
Statistics and Tensor Analysis of Polymer Coil–Stretch Mechanism in Turbulent Drag Reducing Channel Flow
,”
J. Fluid Mech.
,
824
, pp.
135
173
. 10.1017/jfm.2017.332
22.
White
,
C. M.
,
Dubief
,
Y.
, and
Klewicki
,
J.
,
2018
, “
Properties of the Mean Momentum Balance in Polymer Drag-Reduced Channel Flow
,”
J. Fluid Mech.
,
834
, pp.
409
433
. 10.1017/jfm.2017.721
23.
Burger
,
E. D.
,
Chorn
,
L. G.
, and
Perkins
,
T. K.
,
1980
, “
Studies of Drag Reduction Conducted Over a Broad Range of Pipeline Conditions When Flowing Prudhoe Bay Crude Oil
,”
J. Rheol.
,
24
(
5
), pp.
603
626
. 10.1122/1.549579
24.
Piirto
,
M.
,
Eloranta
,
H.
, and
Saarenrinne
,
P.
,
2000
, “
Interactive
Software for Turbulence Analysis from PIV Vector Data
,”
Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July 10–23
.
25.
Baldi
,
S.
, and
Yianneskis
,
M.
,
2003
, “
On the Direct Measurement of Turbulence Energy Dissipation in Stirred Vessels With PIV
,”
Ind. Eng. Chem. Res.
,
42
(
26
), pp.
7006
7016
. 10.1021/ie0208265
26.
Liu
,
N.
,
Wang
,
W.
,
Han
,
J.
,
Zhang
,
M.
,
Angeli
,
P.
,
Wu
,
C.
, and
Gong
,
J.
,
2016
, “
A PIV Investigation of the Effect of Disperse Phase Fraction on the Turbulence Characteristics of Liquid–Liquid Mixing in a Stirred Tank
,”
Chem. Eng. Sci.
,
152
, pp.
528
546
. 10.1016/j.ces.2016.06.040
27.
Malalasekera
,
H. V. W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Prentice Hall
,
Englewood Cliffs, NJ
, 517.
28.
Gabriele
,
A.
,
Nienow
,
A. W.
, and
Simmons
,
M. J. H.
,
2009
, “
Use of Angle Resolved PIV to Estimate Local Specific Energy Dissipation Rates for Up- and Down-Pumping Pitched Blade Agitators in a Stirred Tank
,”
Chem. Eng. Sci.
,
64
(
1
), pp.
126
143
. 10.1016/j.ces.2008.09.018
29.
Kresta
,
S.
,
1998
, “
Turbulence in Stirred Tanks: Anisotropic, Approximate, and Applied
,”
Can. J. Chem. Eng.
,
76
(
3
), pp.
563
576
. 10.1002/cjce.5450760329
30.
Kresta
,
S. M.
, and
Wood
,
P. E.
,
1993
, “
The Flow Field Produced by a Pitched Blade Turbine: Characterization of the Turbulence and Estimation of the Dissipation Rate
,”
Chem. Eng. Sci.
,
48
(
10
), pp.
1761
1774
. 10.1016/0009-2509(93)80346-R
31.
Laufhütte
,
H. D.
, and
Mersmann
,
A.
,
1987
, “
Local Energy Dissipation in Agitated Turbulent Fluids and Its Significance for the Design of Stirring Equipment
,”
Chem. Eng. Technol.
,
10
(
1
), pp.
56
63
. 10.1002/ceat.270100108
32.
Wu
,
H.
, and
Patterson
,
G. K.
,
1989
, “
Laser-Doppler Measurements of Turbulent-Flow Parameters in a Stirred Mixer
,”
Chem. Eng. Sci.
,
44
(
10
), pp.
2207
2221
. 10.1016/0009-2509(89)85155-3
33.
Costes
,
J.
, and
Couderc
,
J. P.
,
1988
, “
Study by Laser Doppler Anemometry of the Turbulent Flow Induced by a Rushton Turbine in a Stirred Tank: Influence of the Size of the Units—II. Spectral Analysis and Scales of Turbulence
,”
Chem. Eng. Sci.
,
43
(
10
), pp.
2765
2772
. 10.1016/0009-2509(88)80019-8
34.
Ducci
,
A.
, and
Yianneskis
,
M.
,
2005
, “
Direct Determination of Energy Dissipation in Stirred Vessels With Two-Point LDA
,”
AIChE J.
,
51
(
8
), pp.
2133
2149
. 10.1002/aic.10468
35.
Escudié
,
R.
,
Bouyer
,
D.
, and
Liné
,
A.
,
2004
, “
Characterization of Trailing Vortices Generated by a Rushton Turbine
,”
AIChE J.
,
50
(
1
), pp.
75
86
. 10.1002/aic.10007
36.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
. 10.1017/S0022112095000462
37.
Escudié
,
R.
, and
Liné
,
A.
,
2007
, “
A Simplified Procedure to Identify Trailing Vortices Generated by a Rushton Turbine
,”
AIChE J.
,
53
(
2
), pp.
523
526
. 10.1002/aic.11082
You do not currently have access to this content.