Abstract

The tolerance and adaptability to various kinds of fuels make intermediate-temperature solid oxide fuel cell (IT-SOFC) and gas turbine (GT) hybrid system one of the most attractive technologies in the future energy market. In this paper, based on a detailed model established on matlab/simulink, a thermodynamic analysis of IT-SOFC/GT hybrid system fueled with different types of biomass gases is presented. During the process of this research, the composition fluctuations of CH4, H2, CO, CO2, N2, and H2O are considered to simulate the practical situation. Operating states of IT-SOFC/GT hybrid system fueled with wood chip gasified gas and farm biogas are compared under the same power scale of 180 kW. Performance and safety evaluations of hybrid system in response to composition fluctuations of wood chip gas and farm biogas are carried out. Results show that the hybrid system can reach an efficiency of 60.78% with wood chip gas and 59.09% with farm biogas. Meanwhile, with each composition of wood chip gas varying from 80% to 120%, the IT-SOFC/GT hybrid system could maintain the electrical efficiency higher than 59%. However, in the case of farm biogas, the efficiency of system drops to as low as 55%. It is also found that composition fluctuations of H2 in wood chip gas and CH4 in farm biogas leave the most significant effects on system performance. For safety consideration, fluctuation range of CH4 in farm biogas should be controlled between 86% and 116%; otherwise, failure of gas turbine would occur due to unsafe operating temperatures. Compared with wood chip gas, operation of IT-SOFC/GT hybrid system with farm biogas requires more water vapor available to prevent failure of the reformer due to carbon deposition.

References

1.
Suping
,
P.
,
Minfang
,
H.
,
Cuibai
,
Y.
et al
,
2004
, “
Solid Oxide Fuel Cells
,”
ActaPhysicaSinica
,
33
(
2
), pp.
90
94
.
2.
Zongqiang
,
M.
, and
Cheng
,
W.
,
2013
,
Low Temperature Solid Oxide Fuel Cells
,
Shanghai Science and Technology Press
,
Shanghai
,
18
19
.
3.
Roberts
,
R.
,
Brouwer
,
J.
,
Jabbari
,
F.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
,
2006
, “
Control Design of an Atmospheric Solid Oxide Fuel Cell/Gas Turbine Hybrid System: Variable Versus Fixed Speed Gas Turbine Operation
,”
J. Power Sources
,
161
(
1
), pp.
484
491
. 10.1016/j.jpowsour.2006.03.059
4.
Palsson
,
J.
,
Selimovic
,
A.
, and
Sjunnesson
,
L.
,
2000
, “
Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation
,”
J. Power Sources
,
86
(
1–2
), pp.
442
448
. 10.1016/S0378-7753(99)00464-4
5.
Calise
,
F.
,
Dentice d’Accadia
,
M.
,
Palombo
,
A.
, and
Vanoli
,
L.
,
2006
, “
Simulation and Exergy Analysis of a Hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System
,”
Energy
,
31
(
15
), pp.
3278
3299
. 10.1016/j.energy.2006.03.006
6.
Zhang
,
X.
,
Li
,
J.
,
Li
,
G.
, and
Feng
,
Z.
,
2006
, “
Dynamic Modeling of a Hybrid System of the Solid Oxide Fuel Cell and Recuperative Gas Turbine
,”
J. Power Sources
,
163
(
1
), pp.
523
531
. 10.1016/j.jpowsour.2006.09.007
7.
Rao
,
A. D.
, and
Samuelsen
,
G. S.
,
2003
, “
A Thermodynamic Analysis of Tubular Solid Oxide Fuel Cell Based Hybrid Systems
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
59
66
. 10.1115/1.1499728
8.
Franzoni
,
A.
,
Magistri
,
L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2008
, “
Thermoeconomic Analysis of Pressurized Hybrid SOFC Systems With CO2 Separation
,”
Energy
,
33
(
2
), pp.
311
320
. 10.1016/j.energy.2007.07.008
9.
Zabihian
,
F.
, and
Fung
,
A. S.
,
2010
, “
Performance of Biogas Fueled Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine Cycle
,”
4th International Conference on Energy Sustainability
,
Phoenix, AZ
,
May 17–22
, pp.
213
223
.
10.
Winkler
,
W.
, and
Lorenz
,
H.
,
2002
, “
The Design of Stationary and Mobile Solid Oxide Fuel Cell-Gas Turbine Systems
,”
J. Power Sources
,
105
(
2
), pp.
222
227
. 10.1016/S0378-7753(01)00943-0
11.
Qingshan
,
Z.
,
2007
, “
Prospect Analysis of Solid Oxide Fuel Cell Based on Biomass Gas
,”
Chin. J. Process Eng.
,
7
(
2
), pp.
419
424
.
12.
Sucipta
,
M.
,
Kimijima
,
S.
,
Song
,
T. W.
, and
Suzuki
,
K.
,
2008
, “
Biomass Solid Oxide Fuel Cell-Micro Gas Turbine Hybrid System: Effect of Fuel Composition
,”
ASME J. Fuel Cell Sci. Technol.
,
5
(
4
), pp.
1
8
. 10.1115/1.2890104
13.
Na
,
J. I.
,
Park
,
S. J.
,
Kim
,
Y. K.
,
Lee
,
J. G.
, and
Kim
,
J. H.
,
2003
, “
Characteristics of Oxygen-Blown Gasification for Combustible Waste in a Fixed-Bed Gasifier
,”
Appl. Energy
,
75
(
3–4
), pp.
275
285
. 10.1016/S0306-2619(03)00041-2
14.
Franco
,
C.
,
Pinto
,
F.
,
Gulyurtlu
,
I.
, and
Cabrita
,
I.
,
2003
, “
The Study of Reactions Influencing the Biomass Steam Gasification Process
,”
Fuel
,
82
(
7
), pp.
835
842
. 10.1016/S0016-2361(02)00313-7
15.
Drift A
,
V. D.
,
Van Doorn
,
J.
, and
Vermeulen
,
J. W.
,
2001
, “
Ten Residual Biomass Fuels for Circulating Fluidized-Bed Gasification
,”
Biomass Bioenergy
,
20
(
1
), pp.
45
56
. 10.1016/S0961-9534(00)00045-3
16.
Sansaniwala
,
S. K.
, and
Rosenb
,
M. A.
,
2017
, “
Global Challenges in the Sustainable Development of Biomass Gasification: An Overview
,”
Renew. Sust. Energy Rev.
,
80
(
1
), pp.
23
43
. 10.1016/j.rser.2017.05.215
17.
Bang-Møller
,
C.
, and
Rokni
,
M.
,
2010
, “
Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2330
2339
. 10.1016/j.enconman.2010.04.006
18.
Lv
,
X.
,
Liu
,
X.
,
Gu
,
C.
, and
Weng
,
Y.
,
2016
, “
Determination of Safe Operation Zone for an Intermediate-Temperature Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
Energy
,
99
(
1
), pp.
91
102
. 10.1016/j.energy.2016.01.047
19.
Ghaffarpour
,
Z.
,
Mahmoudi
,
M.
, and
Farshi L
,
G.
,
2018
, “
Thermoeconomic Assessment of a Novel Integrated Biomass Based Power Generation System Including Gas Turbine Cycle, Solid Oxide Fuel Cell and Rankine Cycle
,”
Energy Convers. Manag.
,
161
(
1
), pp.
1
12
. 10.1016/j.enconman.2018.01.071
20.
Ding
,
X.
,
Lv
,
X.
, and
Weng
,
Y.
,
2019
, “
Coupling Effect of Operating Parameters on Performance of a Biogas-Fueled Solid Oxide Fuel Cell/Gas Turbine Hybrid System
,”
Appl Energy
,
254
(
1
), pp.
113675
. 10.1016/j.apenergy.2019.113675
21.
Zhou
,
N.
, and
Tucker
,
D.
,
2018
, “
Fuel Composition Effect on Cathode Airflow Control in Fuel Cell Gas Turbine Hybrid Systems
,”
J. Power Sources
,
384
(
1
), pp.
223
231
. 10.1016/j.jpowsour.2018.01.026
22.
Harun
,
N. F.
,
Tucker
,
D.
, and
Adams II
,
T. A.
,
2015
, “
Dynamic Response of Fuel Cell Gas Turbine Hybrid to Fuel Composition Changes Using Hardware-Based Simulations
,”
Comput. Aided Process Eng.
, pp.
2423
e8
. 10.1016/B978-0-444-63576-1.50098-4
23.
Perna
,
A.
, and
Minutillo
,
M.
,
2018
, “
Performance Assessment of a Hybrid SOFC/MGT Cogeneration Power Plant Fed by Syngas From a Biomass Down-Draft Gasifier
,”
Appl. Energy
,
227
(
1
), pp.
80
91
. 10.1016/j.apenergy.2017.08.077
24.
Oryshchyn
,
D.
,
Harun
,
N. F.
, and
Tucker
,
D.
,
2018
, “
Fuel Utilization Effects on System Efficiency in Solid Oxide Fuel Cell Gas Turbine Hybrid Systems
,”
Appl. Energy
,
228
(
1
), pp.
1953
1965
. 10.1016/j.apenergy.2018.07.004
25.
Lv
,
X.
,
Ding
,
X.
, and
Weng
,
Y.
,
2019
, “
Effect of Fuel Composition Fluctuation on the Safety Performance of an IT-SOFC/GT Hybrid System
,”
Energy
,
174
(
1
), pp.
45
53
. 10.1016/j.energy.2019.02.083
26.
Krummrein
,
T.
,
Henke
,
M.
,
Kutne
,
P.
, and
Aigner
,
M.
,
2018
, “
Numerical Analysis of Operating Range and SOFC-off-gas Combustor Requirements of a Biogas Powered SOFC-MGT Hybrid Power Plant
,”
Appl. Energy
,
232
(
1
), pp.
598
606
. 10.1016/j.apenergy.2018.09.166
27.
Zhenpeng
,
Y.
, and
Yiwu
,
W.
,
2012
,
Simulation and Experimental Research of a Fuel Cell-Gas Turbine Hybrid System Utilizing Biomass Syngas
,
Shanghai Jiao Tong University
,
Shanghai, China
.
28.
Persson
,
M.
,
Jonsson
,
O.
, and
Wellinger
,
A.
,
2007
, “
Biogas Upgrading to Vehicle Fuel Standards and Grid
,”
IEA Bioenergy
,
1
(
1
), pp.
1
32
.
29.
Trendewicz
,
A. A.
, and
Braun
,
R. J.
,
2013
, “
Techno-economic Analysis of Solid Oxide Fuel Cell-Based Combined Heat and Power Systems for Biogas Utilization at Wastewater Treatment Facilities
,”
J. Power Sources
,
233
(
1
), pp.
380
393
. 10.1016/j.jpowsour.2013.01.017
30.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2004
, “
Anode Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
,
138
(
1
), pp.
120
136
. 10.1016/j.jpowsour.2004.06.040
31.
Xiaojing
,
L.
, and
Chenghong
,
G.
,
2016
, “
Effect of Gasified Biomass Fuel on Load Characteristics of an Intermediate-Temperature Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
,
41
(
22
), pp.
9563
9576
. 10.1016/j.ijhydene.2016.04.104
32.
Xiaojing
,
L.
, and
Chaohao
,
L.
,
2015
, “
Safety Analysis of a Solid Oxide Fuel Cell/Gas Turbine Hybrid System Fueled With Gasified Biomass
,”
ASME J. Fuel Cell Sci. Technol.
,
12
(
1
), p.
011008
. 10.1115/1.4029084
33.
Herb S
,
U. K.
,
Rogers
,
G.
, and
Cohen
,
H.
,
2001
,
Gas Turbine Theory
, 5th ed,
Pearson Education Ltd
.,
London
.
34.
Yang
,
L.
, and
Yiwu
,
W.
,
2011
, “
Performance Study of a Solid Oxide Fuel Cell and Gas Turbine Hybrid System Designed for Methane Operating With Non-Designed Fuels
,”
J. Power Sources
,
196
(
8
), pp.
3824
3835
. 10.1016/j.jpowsour.2011.01.011
35.
Handbook
,
F. C.
,
2004
, “
U.S. Department of Energy, Office of Fossil Energy
,”
Natl. Energy Technol. Lab.
, pp.
7
20
.
36.
Yuzhang
,
W.
,
Fumihko
,
Y.
,
Makoto
,
K.
, and
Takao
,
W.
,
2009
, “
Performance and Effective Kinetic Models of Methane Steam Reforming Over Ni/YSZ Anode of Planar SOFC
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
3885
3893
. 10.1016/j.ijhydene.2009.02.073
You do not currently have access to this content.