Abstract

Spontaneous imbibition (SI) into a porous medium is an important transport phenomenon in petroleum reservoir engineering. The study of spontaneous water imbibition is critical to predict the production performance in these reservoirs developed by waterflooding, especially in the fractured gas reservoirs with active aquifers. While some studies have been reported to characterize spontaneous water imbibition into gas-saturated rocks, they are either limited or inaccurate due to the fact that the existing models have specific assumptions that cannot be applied in other time intervals. To this end, we proposed a novel transition imbibition time t* and developed an all-time (including both early- and later-time SI) model to match the experimental SI data. Furthermore, we proposed a novel model to estimate capillary pressures at different water saturations and to characterize the water saturation profile in capillary-dominated stage. Comparison with the existing capillary pressure estimation models was performed to test the differences. The results demonstrated that the all-time model could fit the experimental imbibition data of the entire SI process satisfactorily. The new saturation model established in this paper can be well fitted with the water saturation profile measured by the X-ray computer tomography (CT) scanners. The results and findings from this work may be of great significance in many areas related to SI, particularly in the development of naturally fractured gas reservoirs with active aquifers.

References

1.
Gruener
,
S.
,
Sadjadi
,
Z.
,
Hermes
,
H. E.
,
Kityk
,
A. V.
,
Knorr
,
K.
,
Egelhaaf
,
S. U.
,
Rieger
,
H.
, and
Huber
,
P.
,
2012
, “
Anomalous Front Broadening During Spontaneous Imbibition in a Matrix With Elongated Pores
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
26
), pp.
10245
10250
. 10.1073/pnas.1119352109
2.
Fries
,
N.
, and
Dreyer
,
M.
,
2008
, “
The Transition From Inertial to Viscous Flow in Capillary Rise
,”
J. Colloid Interface Sci.
,
327
(
1
), pp.
125
128
. 10.1016/j.jcis.2008.08.018
3.
Quéré
,
D.
,
1997
, “
Inertial Capillarity
,”
EPL Europhysics Lett.
,
39
(
5
), p.
533
. 10.1209/epl/i1997-00389-2
4.
Bosanquet
,
C. H.
,
1923
, “
LV. On the Flow of Liquids Into Capillary Tubes
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
,
45
(
267
), pp.
525
531
. 10.1080/14786442308634144
5.
Lucas
,
R.
,
1918
, “
The Time Law of the Capillary Rise of Liquids
,”
Kolloid-Z.
,
23
(
1
), pp.
15
22
. 10.1007/BF01461107
6.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), p.
273
. 10.1103/PhysRev.17.273
7.
Handy
,
L. L.
,
1960
, “
Determination of Effective Capillary Pressures for Porous Media From Imbibition Data
,”
Trans. AIME
,
219
(
01
), pp.
75
80
. 10.2118/1361-G
8.
Lundblad
,
A.
, and
Bergman
,
B.
,
1997
, “
Determination of Contact Angle in Porous Molten-Carbonate Fuel-Cell Electrodes
,”
J. Electrochem. Soc.
,
144
(
3
), p.
984
. 10.1149/1.1837517
9.
Benavente
,
D.
,
Lock
,
P.
,
Del Cura
,
MÁG
, and
Ordóñez
,
S.
,
2002
, “
Predicting the Capillary Imbibition of Porous Rocks From Microstructure
,”
Transp. Porous Media
,
49
(
1
), pp.
59
76
. 10.1023/A:1016047122877
10.
Hu
,
Q.
,
Ewing
,
R. P.
, and
Rowe
,
H. D.
,
2015
, “
Low Nanopore Connectivity Limits Gas Production in Barnett Formation
,”
J. Geophys. Res. Solid Earth
,
120
(
12
), pp.
8073
8087
. 10.1002/2015JB012103
11.
Cai
,
J.
, and
Yu
,
B.
,
2011
, “
A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media
,”
Transp. Porous Media
,
89
(
2
), pp.
251
263
. 10.1007/s11242-011-9767-0
12.
Zhou
,
M.
, and
Li
,
K.
,
2011
, Molecular Modeling and Its Application to Developing Chemicals for Wettability Alteration to Gas-Wetness.
13.
Cai
,
J.
,
Perfect
,
E.
,
Cheng
,
C. L.
, and
Hu
,
X.
,
2014
, “
Generalized Modeling of Spontaneous Imbibition Based on Hagen-Poiseuille Flow in Tortuous Capillaries With Variably Shaped Apertures
,”
Langmuir
,
30
(
18
), pp.
5142
5151
. 10.1021/la5007204
14.
Shi
,
Y.
,
Yassin
,
M. R.
, and
Dehghanpour
,
H.
,
2018
, “
A Modified Model for Spontaneous Imbibition of Wetting Phase Into Fractal Porous Media
,”
Colloids Surf., A
,
543
, pp.
64
75
. 10.1016/j.colsurfa.2017.12.052
15.
Jiang
,
R.
,
Liu
,
X.
,
Wang
,
X.
,
Wang
,
Q.
,
Cui
,
Y.
, and
Zhang
,
C.
,
2020
, “
A Semi-Analytical Fractal-Fractional Mathematical Model for Multi-Fractured Horizontal Wells in Coalbed Methane Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
013002
.https://doi.org/10.1115/1.4047601
16.
Li
,
K.
, and
Horne
,
R. N.
,
2000
, “
Characterization of Spontaneous Water Imbibition Into Gas-Saturated Rocks
,”
SPE/AAPG Western Regional Meeting.
,
Long Beach, CA
,
June 19–23
.
17.
Aronofsky
,
J. S.
,
Masse
,
L.
, and
Natanson
,
S. G.
,
1958
, “
A Model for the Mechanism of Oil Recovery From the Porous Matrix Due to Water Invasion in Fractured Reservoirs
,”
Trans. AIME
,
213
(
1
), pp.
17
19
. 10.2118/932-G
18.
Baker
,
R. O.
,
Spenceley
,
N. K.
, and
Guo
,
B.
,
1998
, “
Using an Analytical Decline Model to Characterize Naturally Fractured Reservoirs
,”
SPE/DOE Improved Oil Recovery Symposium.
,
Tulsa, OK
,
Apr. 19–22
.
19.
Viksund
,
B. G.
,
Morrow
,
N. R.
,
Ma
,
S.
,
Wang
,
W.
, and
Graue
,
A.
,
1998
, “
Initial Water Saturation and Oil Recovery From Chalk and Sandstone by Spontaneous Imbibition
,”
Proceedings, 1998 International Symposium of Society of Core Analysts
,
The Hague
,
Sept. 14–16
.
20.
Civan
,
F.
, and
Rasmussen
,
M. L.
,
2001
, “
Asymptotic Analytical Solutions for Imbibition Waterfloods in Fractured Reservoirs
,”
SPE J.
,
6
(
2
), pp.
171
181
. 10.2118/71312-PA
21.
Li
,
K.
, and
Horne
,
R. N.
,
2004
, “
An Analytical Scaling Method for Spontaneous Imbibition in Gas/Water/Rock Systems
,”
SPE J.
,
9
(
3
), pp.
322
329
. 10.2118/88996-PA
22.
Babadagli
,
T.
,
Hatiboglu
,
C. U.
, and
Hamida
,
T.
,
2009
, “
Evaluation of Matrix-Fracture Transfer Functions for Counter-Current Capillary Imbibition
,”
Transp. Porous Media
,
80
(
1
), pp.
17
56
. 10.1007/s11242-009-9337-x
23.
Di Donato
,
G.
,
Lu
,
H.
,
Tavassoli
,
Z.
, and
Blunt
,
M. J.
,
2007
, “
Multirate-Transfer Dual-Porosity Modeling of Gravity Drainage and Imbibition
,”
SPE J.
,
12
(
1
), pp.
77
88
. 10.2118/93144-PA
24.
Lu
,
H.
,
Di Donato
,
G.
, and
Blunt
,
M. J.
,
2008
, “
General Transfer Functions for Multiphase Flow in Fractured Reservoirs
,”
SPE J.
,
13
(
3
), pp.
289
297
. 10.2118/102542-PA
25.
Schmid
,
K. S.
, and
Geiger
,
S.
,
2013
, “
‘Universal Scaling of Spontaneous Imbibition for Arbitrary Petrophysical Properties: Water-Wet and Mixed-Wet States and Handy’s Conjecture’
,”
J. Pet. Sci. Eng.
,
101
, pp.
44
61
. 10.1016/j.petrol.2012.11.015
26.
March
,
R.
,
Doster
,
F.
, and
Geiger
,
S.
,
2016
, “
Accurate Early-Time and Late-Time Modeling of Countercurrent Spontaneous Imbibition
,”
Water Resour. Res.
,
52
(
8
), pp.
6263
6276
. 10.1002/2015WR018456
27.
Schechter
,
D. S.
,
Zhou
,
D.
, and
Orr Jr
,
F. M.
,
1994
, “
Low IFT Drainage and Imbibition
,”
J. Pet. Sci. Eng.
,
11
(
4
), pp.
283
300
. 10.1016/0920-4105(94)90047-7
28.
Li
,
K.
,
Zhang
,
D.
,
Bian
,
H.
,
Meng
,
C.
, and
Yang
,
Y.
,
2015
, “
Criteria for Applying the Lucas-Washburn Law
,”
Sci. Rep.
,
5
(
1
), p.
14085
. 10.1038/srep14085
29.
Kantzas
,
A.
,
Pow
,
M.
,
Allsopp
,
K.
, and
Marentette
,
D.
,
1997
, “
Co-Current and Counter-Current Imbibition Analysis for Tight Fractured Carbonate Gas Reservoirs
,”
Technical Meeting/Petroleum Conference of the South Saskatchewan Section
,
Regina
,
Oct. 19–22
.
30.
King
,
G. E.
,
2012
, “
Hydraulic Fracturing 101: What Every Representative, Environmentalist, Regulator, Reporter, Investor, University Researcher, Neighbor and Engineer Should Know About Estimating Frac Risk and Improving Frac Performance in Unconventional Gas and Oil Wells
,”
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Feb. 6–8
.
31.
Yang
,
L.
,
Ge
,
H.
,
Shi
,
X.
,
Li
,
J.
,
Zhou
,
T.
,
Cao
,
W.
,
Zhang
,
K.
,
Zhang
,
Y.
, and
Gao
,
M.
,
2017
, “
Experimental and Numerical Study on the Relationship Between Water Imbibition and Salt Ion Diffusion in Fractured Shale Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
283
297
. 10.1016/j.jngse.2016.12.010
32.
Li
,
K.
, and
Horne
,
R. N.
,
2005
, “
Computation of Capillary Pressure and Global Mobility From Spontaneous Water Imbibition Into Oil-Saturated Rock
,”
SPE J.
,
10
(
4
), p.
458
. 10.2118/80553-PA
33.
Li
,
K.
, and
Horne
,
R. N.
,
2007
, “
Systematic Study of Steam–Water Capillary Pressure
,”
Geothermics
,
36
(
6
), pp.
558
574
. 10.1016/j.geothermics.2007.08.002
34.
Fanchi
,
J. R.
,
2002
,
Shared Earth Modeling: Methodologies for Integrated Reservoir Simulations
,
Gulf Professional Publishing
,
Oxford, UK
.
35.
Schmid
,
K. S.
,
Alyafei
,
N.
,
Geiger
,
S.
, and
Blunt
,
M. J.
,
2016
, “
Analytical Solutions for Spontaneous Imbibition: Fractional-Flow Theory and Experimental Analysis
,”
SPE J.
,
21
(
6
), pp.
2308
2316
. 10.2118/184393-PA
36.
Alyafei
,
N.
,
Al-Menhali
,
A.
, and
Blunt
,
M. J.
,
2016
, “
Experimental and Analytical Investigation of Spontaneous Imbibition in Water-Wet Carbonates
,”
Transp. Porous Media
,
115
(
1
), pp.
189
207
. 10.1007/s11242-016-0761-4
37.
Buckley
,
S. E.
, and
Leverett
,
M.
,
1942
, “
Mechanism of Fluid Displacement in Sands
,”
Trans. AIME
,
146
(
01
), pp.
107
116
. 10.2118/942107-G
38.
Schmid
,
K. S.
,
Geiger
,
S.
, and
Sorbie
,
K. S.
,
2011
, “
Semianalytical Solutions for Cocurrent and Countercurrent Imbibition and Dispersion of Solutes in Immiscible Two-Phase Flow
,”
Water Resour. Res.
,
47
(
2
), p.
2
. 10.1029/2010WR009686
39.
Liu
,
D.
,
Castanier
,
L. M.
, and
Brigham
,
W. E.
,
1992
, “
Displacement by Foam in Porous Media
,”
SPE Annual Technical Conference and Exhibition
,
Washington, DC
,
Oct. 4–7
.
40.
Schembre
,
J. M.
, and
Kovscek
,
A. R.
,
2003
, “
A Technique for Measuring Two-Phase Relative Permeability in Porous Media via X-Ray CT Measurements
,”
J. Pet. Sci. Eng.
,
39
(
1–2
), pp.
159
174
. 10.1016/S0920-4105(03)00046-9
41.
Zou
,
S.
,
Hussain
,
F.
,
Arns
,
J.
,
Guo
,
Z.
, and
Arns
,
C. H.
,
2018
, “
Computation of Relative Permeability From In-Situ Imaged Fluid Distributions at the Pore Scale
,”
SPE J.
,
23
(
03
), pp.
737
749
. 10.2118/189453-PA
42.
Zhao
,
H.
,
Hu
,
J.
,
Wang
,
J.
, and
Zhang
,
Y.
,
2019
, “
A Comprehensive Model for Calculating Relative Permeability Based on Spontaneous Imbibition and CT Scanning Measurement
,”
Fuel
,
247
, pp.
287
293
. 10.1016/j.fuel.2019.03.056
43.
Alyafei
,
N.
, and
Blunt
,
M. J.
,
2018
, “
Estimation of Relative Permeability and Capillary Pressure From Mass Imbibition Experiments
,”
Adv. Water Resour.
,
115
, pp.
88
94
. 10.1016/j.advwatres.2018.03.003
44.
Tecklenburg
,
J.
,
Neuweiler
,
I.
,
Carrera
,
J.
, and
Dentz
,
M.
,
2016
, “
Multi-Rate Mass Transfer Modeling of Two-Phase Flow in Highly Heterogeneous Fractured and Porous Media
,”
Adv. Water Resour.
,
91
, pp.
63
77
. 10.1016/j.advwatres.2016.02.010
45.
Burdine
,
N.
,
1953
, “
Relative Permeability Calculations From Pore Size Distribution Data
,”
J. Pet. Technol.
,
5
(
03
), pp.
71
78
. 10.2118/225-G
46.
Brooks
,
R. H.
, and
Corey
,
A. T.
,
1964
, “
Hydraulic Properties of Porous Media and Their Relation to Drainage Design
,”
Trans. ASAE
,
7
(
1
), pp.
26
28
. 10.13031/2013.40684
47.
Sinnokrot
,
A. A.
,
1969
, “
The Effect of Temperature on Oil-Water Capillary Pressure Curves of Limestones and Sandstones
,” Ph.D. dissertation, Stanford University, Stanford, CA.
48.
Li
,
K.
, and
Horne
,
R. N.
,
2001
, “
An Experimental and Analytical Study of Steam/Water Capillary Pressure
,”
SPE Reserv. Eval. Eng.
,
4
(
06
), pp.
477
482
. 10.2118/75294-PA
49.
Yuan
,
X.
,
Yao
,
Y.
,
Liu
,
D.
, and
Pan
,
Z.
,
2019
, “
Spontaneous Imbibition in Coal: Experimental and Model Analysis
,”
J. Nat. Gas Sci. Eng.
,
67
, pp.
108
121
. 10.1016/j.jngse.2019.04.016
50.
Shi
,
Y.
,
Yassin
,
M. R.
,
Yuan
,
L.
, and
Dehghanpour
,
H.
,
2019
, “
Modelling Imbibition Data for Determining Size Distribution of Organic and Inorganic Pores in Unconventional Rocks
,”
Int. J. Coal Geol.
,
201
, pp.
26
43
. 10.1016/j.coal.2018.11.010
51.
Leverett
,
M.
,
1941
, “
Capillary Behavior in Porous Solids
,”
Trans. AIME
,
142
(
1
), pp.
152
169
. 10.2118/941152-G
52.
Wu
,
J.
,
Fan
,
T.
,
Gomez-Rivas
,
E.
,
Gao
,
Z.
,
Yao
,
S.
,
Li
,
W.
,
Zhang
,
C.
,
Sun
,
Q.
,
Gu
,
Y.
, and
Xiang
,
M.
,
2019
, “
Impact of Pore Structure and Fractal Characteristics on the Sealing Capacity of Ordovician Carbonate Cap Rock in the Tarim Basin, China
,”
Mar. Pet. Geol.
,
102
, pp.
557
579
. 10.1016/j.marpetgeo.2019.01.014
53.
Li
,
K.
,
2010
, “
More General Capillary Pressure and Relative Permeability Models From Fractal Geometry
,”
J. Contam. Hydrol.
,
111
(
1–4
), pp.
13
24
. 10.1016/j.jconhyd.2009.10.005
You do not currently have access to this content.