Abstract

Power generation via a biogas-driven Brayton cycle (BC) can be regarded as the best scenario for electricity supply of decentralized complexes or small communities. However, the central problem associated with such technology is the high temperature of its exhaust gases, which can be recovered via appropriate waste heat elimination schemes. Although various studies have previously discussed optimal operating conditions of the enhanced biogas-driven BC in terms of thermodynamics and economic, no comprehensive investigation in terms of selecting the best bottoming cycle for the biogas-driven BC has been carried out up to yet. This spurs the current investigation to recommend the it best bottoming cycle between a close supercritical BC (CSBC) and an inverse BC (IBC) for waste heat recovering of a biogas-driven BC around the optimum point. Another novelty of the present study is the inclusion of the environment index (EI) along with energy, exergy, and economic metrics in the performed multi-objective optimization scheme, resulting in the design of a highly sustainable energy system. The results indicated that no single optimal solution exists in selecting the best bottoming cycle by accounting energy, exergy, exergoeconomic, and exergoenvironmental metrics, simultaneously. Hence, a trade-off should be deliberated in selecting the best case in the design process. Accordingly, the integrated BC/CSBC system is superior to the BC/IBC system in terms of thermodynamics (i.e., both energy and exergy metrics) around both base and optimal design points; however, it is not commendable in terms of economic and exergoenvironmental viewpoints. Quantitatively speaking, selecting the BC/CSBC system can lead to thermal and exergetic performance enhancement of around 3.3%, while degrading economic and exergoenvironmental metrics around 7.2% and 8.3%, respectively.

References

1.
Szega
,
M.
, and
Żymełka
,
P.
,
2018
, “
Thermodynamic and Economic Analysis of the Production of Electricity, Heat, and Cold in the Combined Heat and Power Unit With the Absorption Chillers
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052002
.
2.
Seckin
,
C.
,
2020
, “
Effect of Operational Parameters on a Novel Combined Cycle of Ejector Refrigeration Cycle and Kalina Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012001
.
3.
Pan
,
Z.
,
Yan
,
M.
,
Shang
,
L.
,
Li
,
P.
,
Zhang
,
L.
, and
Liu
,
J.
,
2020
, “
Thermoeconomic Analysis of a Combined Natural Gas Cogeneration System With a Supercritical CO2 Brayton Cycle and an Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102108
.
4.
Chowdhury
,
M.
, and
Mokheimer
,
E.
,
2020
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
.
5.
Kupecki
,
J.
,
Motylinski
,
K.
,
Szablowski
,
L.
,
Zurawska
,
A.
,
Naumovich
,
Y.
,
Szczesniak
,
A.
, and
Milewski
,
J.
,
2020
, “
Quantification of the Improvement of Performance of Solid Oxide Fuel Cell Using Chiller-Based Fuel Recirculation
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022002
.
6.
Ding
,
X.
,
Lv
,
X.
, and
Weng
,
Y.
,
2021
, “
Fuel-Adaptability Analysis of Intermediate-Temperature-SOFC/Gas Turbine Hybrid System With Biomass gas
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022104
.
7.
Anwar
,
K.
,
Deshmukh
,
S.
, and
Mustafa Rizvi
,
S.
,
2020
, “
Feasibility and Sensitivity Analysis of a Hybrid Photovoltaic/Wind/Biogas/Fuel-Cell/Diesel/Battery System for Off-Grid Rural Electrification Using Homer
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061307
.
8.
Zhang
,
H.
,
Wang
,
H.
,
Zhu
,
X.
,
Qiu
,
Y.-J.
,
Li
,
K.
,
Chen
,
R.
, and
Liao
,
Q.
,
2013
, “
A Review of Waste Heat Recovery Technologies Towards Molten Slag in Steel Industry
,”
Appl. Energy
,
112
, pp.
956
966
.
9.
Ghaebi
,
H.
,
Yari
,
M.
,
Gargari
,
S. G.
, and
Rostamzadeh
,
H.
,
2018
, “
Thermodynamic Modeling and Optimization of a Combined Biogas Steam Reforming System and Organic Rankine Cycle for Coproduction of Power and Hydrogen
,”
Renewable Energy
,
30
, pp.
87
102
.
10.
Jabari
,
F.
,
Mohammadi-ivatloo
,
B.
,
Bannae-Sharifian
,
M.-B.
, and
Ghaebi
,
H.
,
2018
, “
Design and Performance Investigation of a Biogas Fueled Combined Cooling and Power Generation System
,”
Energy Convers. Manage.
,
169
, pp.
371
382
. 2018/08/01.
11.
Zareh
,
A. D.
,
Saray
,
R. K.
,
Mirmasoumi
,
S.
, and
Bahlouli
,
K.
,
2018
, “
Extensive Thermodynamic and Economic Analysis of the Cogeneration of Heat and Power System Fueled by the Blend of Natural Gas and Biogas
,”
Energy Convers. Manage.
,
164
, pp.
329
343
.
12.
Leonzio
,
G.
,
2018
, “
An Innovative Trigeneration System Using Biogas as Renewable Energy
,”
Chin. J. Chem. Eng.
,
26
(
5
), pp.
1179
1191
.
13.
Sevinchan
,
E.
,
Dincer
,
I.
, and
Lang
,
H.
,
2019
, “
Energy and Exergy Analyses of a Biogas Driven Multigenerational System
,”
Energy
,
166
, pp.
715
723
.
14.
Rostamzadeh
,
H.
,
Gargari
,
S. G.
,
Namin
,
A. S.
, and
Ghaebi
,
H.
,
2019
, “
A Novel Multigeneration System Driven by a Hybrid Biogas-Geothermal Heat Source, Part II: Multi-criteria Optimization
,”
Energy Convers. Manage.
,
180
, pp.
859
888
. 2019/01/15/.
15.
Gholizadeh
,
T.
,
Vajdi
,
M.
, and
Mohammadkhani
,
F.
,
2019
, “
Thermodynamic and Thermoeconomic Analysis of Basic and Modified Power Generation Systems Fueled by Biogas
,”
Energy Convers. Manage.
,
181
, pp.
463
475
. 2019/02/01/.
16.
Ochoa
,
G. V.
,
Forero
,
J. D.
, and
Rojas
,
J. P.
,
2020
, “
A Comparative Energy and Exergy Optimization of a Supercritical-CO2 Brayton Cycle and Organic Rankine Cycle Combined System Using Swarm Intelligence Algorithms
,”
Heliyon
,
6
(
6
), p.
e04136
.
17.
Liang
,
Y.
,
Chen
,
J.
,
Luo
,
X.
,
Chen
,
J.
,
Yang
,
Z.
, and
Chen
,
Y.
,
2020
, “
Simultaneous Optimization of Combined Supercritical CO2 Brayton Cycle and Organic Rankine Cycle Integrated With Concentrated Solar Power System
,”
J. Cleaner Prod.
,
266
, p.
121927
.
18.
Yang
,
Y.
,
Huang
,
Y.
,
Jiang
,
P.
, and
Zhu
,
Y.
,
2020
, “
Multi-objective Optimization of Combined Cooling, Heating, and Power Systems With Supercritical CO2 Recompression Brayton Cycle
,”
Appl. Energy
,
271
, p.
115189
.
19.
Gholizadeh
,
T.
,
Vajdi
,
M.
, and
Rostamzadeh
,
H.
,
2020
, “
Exergoeconomic Optimization of a new Trigeneration System Driven by Biogas for Power, Cooling, and Freshwater Production
,”
Energy Convers. Manage.
,
205
, p.
112417
.
20.
Gholizadeh
,
T.
,
Vajdi
,
M.
, and
Rostamzadeh
,
H.
,
2019
, “
A new Biogas-Fueled bi-Evaporator Electricity/Cooling Cogeneration System: Exergoeconomic Optimization
,”
Energy Convers. Manage.
,
196
, pp.
1193
1207
.
21.
Kizilkan
,
O.
,
2020
, “
Performance Assessment of Steam Rankine Cycle and sCO2 Brayton Cycle for Waste Heat Recovery in a Cement Plant: A Comparative Study for Supercritical Fluids
,”
Int. J. Ener. Res.
,
44
(
15
), pp.
12329
12343
.
22.
Mohammed
,
R. H.
,
Qasem
,
N. A.
, and
Zubair
,
S. M.
,
2020
, “
Enhancing the Thermal and Economic Performance of Supercritical CO2 Plant by Waste Heat Recovery Using an Ejector Refrigeration Cycle
,”
Energy Convers. Manage.
,
224
, p.
113340
.
23.
Gholizadeh
,
T.
,
Vajdi
,
M.
, and
Rostamzadeh
,
H.
,
2019
, “
Energy and Exergy Evaluation of a New Bi-evaporator Electricity/Cooling Cogeneration System Fueled by Biogas
,”
J. Cleaner Prod.
,
233
, pp.
1494
1509
.
24.
Olumayegun
,
O.
,
Wang
,
M.
, and
Kelsall
,
G.
,
2017
, “
Thermodynamic Analysis and Preliminary Design of Closed Brayton Cycle Using Nitrogen as Working Fluid and Coupled to Small Modular Sodium-Cooled Fast Reactor (SM-SFR)
,”
Appl. Energy
,
191
, pp.
436
453
.
25.
Agnew
,
B.
,
Anderson
,
A.
,
Potts
,
I.
,
Frost
,
T. H.
, and
Alabdoadaim
,
M. A.
,
2003
, “
Simulation of Combined Brayton and Inverse Brayton Cycles
,”
Appl. Therm. Eng.
,
23
(
8
), pp.
953
963
.
26.
Ganjehkaviri
,
A.
,
Mohd Jaafar
,
M. N.
,
Ahmadi
,
P.
, and
Barzegaravval
,
H.
,
2014
, “
Modelling and Optimization of Combined Cycle Power Plant Based on Exergoeconomic and Environmental Analyses
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
566
578
.
27.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1995
,
Thermal Design and Optimization
,
John Wiley & Sons
,
New York
.
28.
Chowdhury
,
M. T.
, and
Mokheimer
,
E. M. A.
,
2021
, “
Energy and Exergy Performance Comparative Analysis of Solar Driven Organic Rankine Cycle Using Different Organic Fluids
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102107
.
29.
Ebadollahi
,
M.
,
Rostamzadeh
,
H.
,
Pedram
,
M. Z.
,
Ghaebi
,
H.
, and
Amidpour
,
M.
,
2019
, “
Proposal and Assessment of a New Geothermal-Based Multigeneration System for Cooling, Heating, Power, and Hydrogen Production, Using LNG Cold Energy Recovery
,”
Renewable Energy
,
135
, pp.
66
87
.
30.
Khoshgoftar Manesh
,
M. H.
,
Abdolmaleki
,
M.
,
Vazini Modabber
,
H.
, and
Rosen
,
M. A.
,
2021
, “
Dynamic Advanced Exergetic, Exergoeconomic, and Environmental Analyses of a Hybrid Solar City Gate Station
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102105
.
31.
Ebadollahi
,
M.
,
Rostamzadeh
,
H.
,
Pedram
,
M. Z.
,
Ghaebi
,
H.
, and
Amidpour
,
M.
,
2019
, “
Proposal and Multi-criteria Optimization of No Nw Combined Heating and Power Systems for the Sabalan Geothermal Source
,”
J. Cleaner Prod.
,
229
, pp.
1065
1081
.
32.
Meyer
,
L.
,
Tsatsaronis
,
G.
,
Buchgeister
,
J.
, and
Schebek
,
L.
,
2009
, “
Exergoenvironmental Analysis for Evaluation of the Environmental Impact of Energy Conversion Systems
,”
Energy
,
34
(
1
), pp.
75
89
.
33.
Cavalcanti
,
E. J. C.
,
2017
, “
Exergoeconomic and Exergoenvironmental Analyses of an Integrated Solar Combined Cycle System
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
507
519
.
34.
Wang
,
W.
,
Wang
,
J.
,
Lu
,
Z.
, and
Wang
,
S.
,
2020
, “
Exergoeconomic and Exergoenvironmental Analysis of a Combined Heating and Power System Driven by Geothermal Source
,”
Energy Convers. Manage.
,
211
, p.
112765
.
35.
Siemens
,
2019
, “
Siemens Gas Turbine Portfolio
,”
Article No. PGDG-B10006-06-7600
.
36.
Copco
,
A.
,
2010
,
General Catalog For Compressed Air, Gas And Vacuum Solutions
.
You do not currently have access to this content.