Abstract

Fault management of systems is a key component in mission/operation success of each system or technology. Fault management can be implemented into various different applications, power generation, industrial processing, aviation and transportation, and electrical grids with combinations of renewable energy sources. As the complexity of the overall system design increases, reliance on just pure physics-based or pure data-based modeling is shown to be deficient in the accuracy of fault management. This work shows the potential of a combination of digital twin and a fault management algorithm. The algorithm is designed to be robust, accurate, reliable, and fast; it is based on both physics and data-based model modeling. The algorithm compares physical and data-based approaches to provide the most reliable fault management solution, through a digital twin. The fault management algorithm is designed to use physics-based model validated on real/synthetic data (data-based model).

References

1.
Volponi
,
A. J.
, and
Tang
,
L.
,
2016
, “
Improved Engine Health Monitoring Using Full Flight Data and Companion Engine Information
,”
SAE Int. J. Aerosp.
,
9
(
1
), pp.
91
102
.
2.
Jones
,
D.
,
Snider
,
C.
,
Nassehi
,
A.
,
Yon
,
J.
, and
Hicks
,
B.
,
2020
, “
Characterising the Digital Twin: A Systematic Literature Review
,”
CIRP J. Manuf. Sci. Technol.
,
29
, pp.
36
52
.
3.
Cimino
,
C.
,
Negri
,
E.
, and
Fumagalli
,
L.
,
2019
, “
Review of Digital Twin Applications in Manufacturing
,”
Comput. Ind.
,
113
, p.
103130
.
4.
Zitney
,
S. E.
,
2019
, “
Dynamic Model-Based Digital Twin, Optimization, and Control Technologies for Improving Flexible Power Plant Operations
,”
3rd Annual Connected Plant Conference
,
Charlotte, NC
. https://www.osti.gov/servlets/purl/1502381
5.
Brosinsky
,
C.
,
Krebs
,
R.
, and
Westermann
,
D.
,
2020
, “
Embedded Digital Twins in Future Energy Management Systems: Paving the way for Automated Grid Control
,”
At-Automatisierungstechnik
,
68
(
9
), pp.
750
764
.
6.
Madni
,
A.
,
Madni
,
C.
, and
Lucero
,
S.
,
2019
, “
Leveraging, Digital Twin Technology in Model-Based Systems Engineering
,”
Systems
,
7
(
1
), p.
7
.
7.
Howard
,
D. A.
,
Ma
,
Z.
, and
Jørgensen
,
B. N.
,
2021
, “
Digital Twin Framework for Energy Efficient Greenhouse Industry 4.0
,”
Adv. Intell. Syst. Comput.
8.
Wang
,
J.
,
Ye
,
L.
,
Gao
,
R. X.
,
Li
,
C.
, and
Zhang
,
L.
,
2019
, “
Digital Twin for Rotating Machinery Fault Diagnosis in Smart Manufacturing
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3920
3934
.
9.
Uhlemann
,
T. H. J.
,
Schock
,
C.
,
Lehmann
,
C.
,
Freiberger
,
S.
, and
Steinhilper
,
R.
,
2017
, “
The Digital Twin: Demonstrating the Potential of Real Time Data Acquisition in Production Systems
,”
Procedia Manuf.
,
9
, pp.
113
120
.
10.
Ebrahimi
,
A.
,
2019
, “
Challenges of Developing a Digital Twin Model of Renewable Energy Generators
,”
2019 IEEE 28th International Symposium on Industrial Electronics (ISIE)
,
June
, pp.
1059
1066
.
11.
Park
,
H. A.
,
Byeon
,
G.
,
Son
,
W.
,
Jo
,
H. C.
,
Kim
,
J.
, and
Kim
,
S.
,
2020
, “
Digital Twin for Operation of Microgrid: Optimal Scheduling in Virtual Space of Digital Twin
,”
Energies
,
13
(
20
), p.
5504
.
12.
Goyal
,
V.
,
Xu
,
M.
,
Kapat
,
J.
, and
Vesely
,
L.
,
2021
, “
Prediction Enhancement of Machine Learning Using Time Series Modeling in Gas Turbines
,”
Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power
,
Virtual, Online
,
June 7–11
,
ASME
, p.
V004T09A004
.
13.
Lu
,
Q.
,
Xie
,
X.
,
Parlikad
,
A. K.
, and
Schooling
,
J. M.
,
2020
, “
Digital Twin-Enabled Anomaly Detection for Built Asset Monitoring in Operation and Maintenance
,”
Autom. Constr.
,
118
, p.
103277
.
14.
Al-Ali
,
A. R.
,
Gupta
,
R.
,
Batool
,
T. Z.
,
Landolsi
,
T.
,
Aloul
,
F.
, and
Al Nabulsi
,
A.
,
2020
, “
Digital Twin Conceptual Model Within the Context of Internet of Things
,”
Future Internet
,
12
(
10
), p.
163
.
15.
Loboda
,
I.
,
2016
, “
Neural Networks for Gas Turbine Diagnosis
,”
Artificial Neural Networks-Models and Applications
16.
Christian
,
T.
,
2014
, “
Determining the Contents of the Digital System Model
,”
AFRL. NIST MBE Summit
,
NIST, Gaithersburg, MD
.
17.
Goyal
,
V.
,
Xu
,
M.
, and
Kapat
,
J.
,
2019
, “
Use of Vector Autoregressive Model for Anomaly Detection in Utility Gas Turbines
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, 2019
,
American Society of Mechanical Engineers
.
18.
Lin
,
L.
,
Athe
,
P.
,
Rouxelin
,
P.
,
Avramova
,
M.
,
Gupta
,
A.
,
Youngblood
,
R.
,
Lane
,
J.
, and
Dinh
,
N.
,
2021
, “
Development and Assessment of a Nearly Autonomous Management and Control System for Advanced Reactors
,”
Ann. Nucl. Energy
,
150
, p.
107861
.
19.
Zhang
,
Y.
,
Ma
,
S.
,
Yang
,
H.
,
Lv
,
J.
, and
Liu
,
Y.
,
2018
, “
A Big Data Driven Analytical Framework for Energy-Intensive Manufacturing Industries
,”
J. Cleaner Prod.
,
197
, pp.
57
72
.
20.
Augustine
,
P.
,
2020
, “
The Industry use Cases for the Digital Twin Idea
,”
Adv. Comput.
,
117
, pp.
79
105
.
21.
Glaessgen
,
E. H.
, and
Stargel
,
D. S.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
Collect Technical Paper—AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
, pp.
1
14
.
22.
Tharma
,
R.
,
Winter
,
R.
, and
Eigner
,
M.
,
2018
, “
An Approach for the Implementation of the Digital Twin in the Automotive Wiring Harness Field
,”
DS 92: Proceedings of the DESIGN 2018 15th International Design Conference
, Vol.
6
, pp.
3023
3032
.
23.
Xu
,
B.
,
Wang
,
J.
,
Wang
,
X.
,
Liang
,
Z.
,
Cui
,
L.
,
Liu
,
X.
,
Liu
,
X.
, and
Ku
,
A. Y
,
2019
, “
A Case Study of Digital-Twin-Modelling Analysis on Power-Plant-Performance Optimizations
,”
Clean Energy
,
3
(
3
), pp.
227
234
.
24.
Yu
,
J.
,
Liu
,
P.
, and
Li
,
Z.
,
2020
, “
Hybrid Modelling and Digital Twin Development of a Steam Turbine Control Stage for Online Performance Monitoring
,”
Renewable Sustainable Energy Rev.
,
133
, p.
110077
.
25.
Goyal
,
V.
,
Xu
,
M.
,
Kapat
,
J.
, and
Vesely
,
L.
,
2020
, “
Prediction of Gas Turbine Performance Using Machine Learning Methods
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 6: Education; Electric Power
,
Virtual, Online
,
Sept. 21–25
, ASME, p. V006T09A004.
26.
Lee
,
A.
,
Ghouse
,
J. H.
,
Eslick
,
J. C.
,
Laird
,
C. D.
,
Siirola
,
J. D.
,
Zamarripa
,
M. A.
,
Gunter
,
D.
, et al
,
2021
, “
The IDAES Process Modeling Framework and Model Library—Flexibility for Process Simulation and Optimization
,”
J. Adv. Manuf. Process.
,
3
(
3
), p.
e10095
.
27.
Gunter
,
D. K.
,
Agarwal
,
D. A.
,
Beattie
,
K. S.
,
Boverhof
,
J. R.
,
Cholia
,
S.
,
Cheah
,
Y. W.
,
Elgammal
,
H.
, et al
,
2018
, “
Institute for the Design of Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE Framework) (No. IDAES PSE Framework)
,” Lawrence Berkeley National Lab (LBNL),
Berkeley, CA
.
You do not currently have access to this content.