Abstract

The accuracy of analytical wake models applied in wind farm layout optimization (WFLO) problems is of great significance as the high-fidelity methods such as large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) are still not able to handle an optimization problem for large wind farms. Based on a variety of analytical wake models developed in the past decades, Flow Redirection and Induction in Steady State (FLORIS) have been published as a tool that integrated several widely used wake models and their expansions. This paper compares four wake models selected from FLORIS by applying three classical WFLO scenarios. The results illustrate that the Jensen wake model is the fastest, but the issue of underestimating the velocity deficit is obvious. The multi-zone model needs additional tuning on the parameters inside the model to fit specific wind turbines. The Gaussian-curl hybrid (GCH) wake model, as an advanced expansion of the Gaussian wake model, does not provide a significant improvement in the current study, where the yaw control is not included. The Gaussian wake model is recommended for the WFLO projects implemented under the FLORIS framework and has similar wind conditions with the present work.

References

1.
Najafi
,
H.
,
2012
, “
Evaluation of Alternative Cooling Techniques for Photovoltaic Panels
,”
Doctoral dissertation
,
University of Alabama
,
Tuscaloosa, AL
.
2.
Ismail
,
K. A. R.
,
Canale
,
T.
, and
Lino
,
F. A. M.
,
2021
, “
Effects of the Airfoil Section, Chord and Twist Angle Distributions on the Starting Torque of Small Horizontal Axis Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
051301
.
3.
Kaya
,
M. N.
,
Köse
,
F.
,
Uzol
,
O.
,
Ingham
,
D.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2021
, “
Aerodynamic Optimization of a Swept Horizontal Axis Wind Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
091301
.
4.
Khalid
,
S. A.
,
Khan
,
A. M.
, and
Shah
,
O. R.
,
2021
, “
A Numerical Study Into the Use of Auxectic Structures for Structural Damping in Composite Sandwich Core Panels for Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
031301
.
5.
Abdelsalam
,
A. M.
,
El-Askary
,
W. A.
,
Kotb
,
M. A.
, and
Sakr
,
I. M.
,
2020
, “
Computational Analysis of an Optimized Curved-Bladed Small-Scale Horizontal Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
061302
.
6.
Ighodaro
,
O.
, and
Akhihiero
,
D.
,
2020
, “
Modeling and Performance Analysis of a Small Horizontal Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031301
.
7.
Bilgili
,
M.
,
Tontu
,
M.
, and
Sahin
,
B.
,
2020
, “
Aerodynamic Rotor Performance of a 3300-kW Modern Commercial Large-Scale Wind Turbine Installed in a Wind Farm
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031302
.
8.
Hasan
,
A. S.
,
Elgammal
,
T.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2020
, “
Comparative Study of the Inline Configuration Wind Farm
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061302
.
9.
Okulov
,
V. L.
,
Mikkelsen
,
R.
,
Sørensen
,
J. N.
,
Naumov
,
I. V.
, and
Tsoy
,
M. A.
,
2017
, “
Power Properties of Two Interacting Wind Turbine Rotors
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051210
.
10.
Hasan
,
A. S.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2019
, “
Experimental Study of the Wake Regions in Wind Farms
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051209
.
11.
Al Sam
,
A.
,
Szasz
,
R.
, and
Revstedt
,
J.
,
2017
, “
An Investigation of Wind Farm Power Production for Various Atmospheric Boundary Layer Heights
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051216
.
12.
Mosetti
,
G.
,
Poloni
,
C.
, and
Diviacco
,
B.
,
1994
, “
Optimization of Wind Turbine Positioning in Large Windfarms by Means of a Genetic Algorithm
,”
J. Wind Eng. Ind. Aerodyn.
,
51
(
1
), pp.
105
116
.
13.
Grady
,
S. A.
,
Hussaini
,
M. Y.
, and
Abdullah
,
M. M.
,
2005
, “
Placement of Wind Turbines Using Genetic Algorithms
,”
Renewable Energy
,
30
(
2
), pp.
259
270
.
14.
Azlan
,
F.
,
Kurnia
,
J. C.
,
Tan
,
B. T.
, and
Ismadi
,
M. Z.
,
2021
, “
Review on Optimisation Methods of Wind Farm Array Under Three Classical Wind Condition Problems
,”
Renewable Sustainable Energy Rev.
,
135
.
15.
Jensen
,
N. O.
,
1983
, “
A Note on Wind Generator Interaction
,”
Risø-M-2411 Risø Nationall Laboratary Roskilde
, pp.
1
16
, http://www.risoe.dk/rispubl/VEA/veapdf/ris-m-2411.pdf
16.
Frandsen
,
S.
,
Barthelmie
,
R.
,
Pryor
,
S.
,
Rathmann
,
O.
,
Larsen
,
S.
,
Højstrup
,
J.
, and
Thøgersen
,
M.
,
2006
, “
Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms
,”
Wind Energy
,
9
(
1–2
), pp.
39
53
.
17.
Bastankhah
,
M.
, and
Porté-Agel
,
F.
,
2014
, “
A New Analytical Model for Wind-Turbine Wakes
,”
Renewable Energy
,
70
, pp.
116
123
.
18.
Dhiman
,
H. S.
,
Deb
,
D.
, and
Foley
,
A. M.
,
2020
, “
Bilateral Gaussian Wake Model Formulation for Wind Farms: A Forecasting Based Approach
,”
Renewable Sustainable Energy Rev.
,
127
.
19.
Brogna
,
R.
,
Feng
,
J.
,
Sørensen
,
J. N.
,
Shen
,
W. Z.
, and
Porté-Agel
,
F.
,
2020
, “
A New Wake Model and Comparison of Eight Algorithms for Layout Optimization of Wind Farms in Complex Terrain
,”
Appl. Energy
,
259
.
20.
Schreiber
,
J.
,
Balbaa
,
A.
, and
Bottasso
,
C. L.
,
2020
, “
Brief Communication: A Double-Gaussian Wake Model
,”
Wind Energy Sci.
,
5
(
1
), pp.
237
244
.
21.
Ge
,
M.
,
Wu
,
Y.
,
Liu
,
Y.
, and
Yang
,
X. I. A.
,
2019
, “
A Two-Dimensional Jensen Model With a Gaussian-Shaped Velocity Deficit
,”
Renewable Energy
,
141
, pp.
46
56
.
22.
Gao
,
X.
,
Yang
,
H.
, and
Lu
,
L.
,
2016
, “
Optimization of Wind Turbine Layout Position in a Wind Farm Using a Newly-Developed Two-Dimensional Wake Model
,”
Appl. Energy
,
174
, pp.
192
200
.
23.
Sun
,
H.
, and
Yang
,
H.
,
2018
, “
Study on an Innovative Three-Dimensional Wind Turbine Wake Model
,”
Appl. Energy
,
226
, pp.
483
493
.
24.
Sun
,
H.
,
Gao
,
X.
, and
Yang
,
H.
,
2019
, “
Validations of Three-Dimensional Wake Models With the Wind Field Measurements in Complex Terrain
,”
Energy
,
189
.
25.
Gao
,
X.
,
Li
,
B.
,
Wang
,
T.
,
Sun
,
H.
,
Yang
,
H.
,
Li
,
Y.
,
Wang
,
Y.
, and
Zhao
,
F.
,
2020
, “
Investigation and Validation of 3D Wake Model for Horizontal-Axis Wind Turbines Based on Filed Measurements
,”
Appl. Energy
,
260
.
26.
Tao
,
S.
,
Xu
,
Q.
,
Feijóo
,
A.
,
Zheng
,
G.
, and
Zhou
,
J.
,
2020
, “
Wind Farm Layout Optimization With a Three-Dimensional Gaussian Wake Model
,”
Renewable Energy
,
159
, pp.
553
569
.
27.
Andersen
,
S. J.
,
Sørensen
,
J. N.
,
Ivanell
,
S.
, and
Mikkelsen
,
R. F.
,
2014
, “
Comparison of Engineering Wake Models With CFD Simulations
,”
J. Phys. Conf. Ser.
,
524
(
1
), p.
012161
.
28.
Archer
,
C. L.
,
Vasel-Be-Hagh
,
A.
,
Yan
,
C.
,
Wu
,
S.
,
Pan
,
Y.
,
Brodie
,
J. F.
, and
Maguire
,
A. E.
,
2018
, “
Review and Evaluation of Wake Loss Models for Wind Energy Applications
,”
Appl. Energy
,
226
, pp.
1187
1207
.
29.
Larsen
,
G. C.
,
2009
, “
A Simple Stationary Semi-Analytical Wake Model
,”
Denmark. Forskningscenter Risoe. Risoe-R, 1713(Aug.)
.
30.
Xie
,
S.
, and
Archer
,
C.
,
2015
, “
Self-similarity and Turbulence Characteristics of Wind Turbine Wakes via Large-Eddy Simulation
,”
Wind Energy
,
18
(
10
), pp.
1815
1838
.
31.
Ghaisas
,
N. S.
, and
Archer
,
C. L.
,
2016
, “
Geometry-Based Models for Studying the Effects of Wind Farm Layout
,”
J. Atmos. Ocean. Technol.
,
33
(
3
), pp.
481
501
.
32.
Gao
,
X.
,
Li
,
Y.
,
Zhao
,
F.
, and
Sun
,
H.
,
2020
, “
Comparisons of the Accuracy of Different Wake Models in Wind Farm Layout Optimization
,”
Energy Explor. Exploit.
,
38
(
5
), pp.
1725
1741
.
33.
NREL
,
2020
, “
FLORIS. Version 2.4
,”
GitHub Repository.
GitHub
, https://github.com/NREL/floris
34.
Gebraad
,
P. M. O.
,
Teeuwisse
,
F. W.
,
van Wingerden
,
J. W.
,
Fleming
,
P. A.
,
Ruben
,
S. D.
,
Marden
,
J. R.
, and
Pao
,
L. Y.
,
2014
, “
A Data-Driven Model for Wind Plant Power Optimization by Yaw Control
.”
35.
Gebraad
,
P. M. O.
,
Teeuwisse
,
F. W.
,
van Wingerden
,
J. W.
,
Fleming
,
P. A.
,
Ruben
,
S. D.
,
Marden
,
J. R.
, and
Pao
,
L. Y.
,
2016
, “
Wind Plant Power Optimization Through Yaw Control Using a Parametric Model for Wake Effects—A CFD Simulation Study
,”
Wind Energy
,
19
(
1
), pp.
95
114
.
36.
Abkar
,
M.
, and
Porté-Agel
,
F.
,
2015
, “
Influence of Atmospheric Stability on Wind-Turbine Wakes: A Large-Eddy Simulation Study
,”
Phys. Fluids
,
27
(
3
), p.
35104
.
37.
Niayifar
,
A.
, and
Porté-Agel
,
F.
,
2016
, “
Analytical Modeling of Wind Farms: A New Approach for Power Prediction
,”
Energies
,
9
(
9
), pp.
1
13
.
38.
Dilip
,
D.
, and
Porté-Agel
,
F.
,
2017
, “
Wind Turbine Wake Mitigation Through Blade Pitch Offset
,”
Energies
,
10
(
6
), p.
757
.
39.
Blonde
,
F.
, and
Cathelain
,
M.
,
2020
, “
An Alternative Form of the Super-Gaussian Wind Turbine Wake Model
,”
Wind Energy Sci.
,
5
(
3
), pp.
1225
1236
.
40.
Qian
,
G. W.
, and
Ishihara
,
T.
,
2018
, “
A New Analytical Wake Model for Yawed Wind Turbines
,”
Energies
,
11
(
3
), p.
665
.
41.
Martínez-Tossas
,
L. A.
,
Annoni
,
J.
,
Fleming
,
P. A.
, and
Churchfield
,
M. J.
,
2019
, “
The Aerodynamics of the Curled Wake: A Simplified Model in View of Flow Control
,”
Wind Energy Sci.
,
4
(
1
), pp.
127
138
.
42.
Martínez-Tossas
,
L. A.
,
King
,
J.
,
Quon
,
E.
,
Bay
,
C. J.
,
Mudafort
,
R.
,
Hamilton
,
N.
,
Howland
,
M. F.
, and
Fleming
,
P. A.
,
2021
, “
The Curled Wake Model a Three-Dimensional and Extremely Fast Steady-State Wake Solver for Wind Plant Flows
,”
Wind Energy Sci.
,
6
(
2
), pp.
555
570
.
43.
King
,
J.
,
Fleming
,
P.
,
King
,
R.
,
Martínez-Tossas
,
L. A.
,
Bay
,
C. J.
,
Mudafort
,
R.
, and
Simley
,
E.
,
2021
, “
Control-Oriented Model for Secondary Effects of Wake Steering
,”
Wind Energy Sci.
,
6
(
3
), pp.
701
714
.
44.
Kraft
,
D.
,
1988
, “
A Software Package for Sequential Quadratic Programming
,”
DFVLR Obersfaffeuhofen, Germany
.
45.
Thomas
,
J. J.
, and
Ning
,
A.
,
2018
, “
A Method for Reducing Multi-modality in the Wind Farm Layout Optimization Problem
,”
J. Phys. Conf. Ser.
,
1037
(
4
), p.
42012
.
46.
Sanderse
,
B.
,
2009
, “
Aerodynamics of Wind Turbine Wakes: Literature Review,” Energy Research. Center of the Netherlands
.”
47.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
et al
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.
48.
Bianchi
,
F. D.
,
De Battista
,
H.
, and
Mantz
,
R. J.
,
2006
,
Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design
,
Springer Science & Business Media
,
New York
.
49.
Annoni
,
J.
,
Fleming
,
P.
,
Scholbrock
,
A.
,
Roadman
,
J.
,
Dana
,
S.
,
Adcock
,
C.
,
Porte-Agel
,
F.
,
Raach
,
S.
,
Haizmann
,
F.
, and
Schlipf
,
D.
,
2018
, “
Analysis of Control-Oriented Wake Modeling Tools Using Lidar Field Results
,”
Wind Energy Sci.
,
3
(
2
), pp.
819
831
.
50.
Parada
,
L.
,
Herrera
,
C.
,
Flores
,
P.
, and
Parada
,
V.
,
2017
, “
Wind Farm Layout Optimization Using a Gaussian-Based Wake Model
,”
Renewable Energy
,
107
, pp.
531
541
.
51.
Thomas
,
J.
,
Tingey
,
E.
, and
Ning
,
A.
,
2015
, “
Comparison of Two Wake Models for use in Gradient-Based Wind Farm Layout Optimization
,”
IEEE Conference on Technologies for Sustainability (SusTech)
,
Ogden, UT
.
52.
Teng
,
J.
, and
Markfort
,
C. D.
,
2020
, “
A Calibration Procedure for an Analytical Wake Model Using Wind Farm Operational Data
,”
Energies
,
13
(
14
), p.
3537
.
53.
Wu
,
Y. T.
,
Lin
,
C. Y.
, and
Chang
,
T. J.
,
2020
, “
Effects of Inflow Turbulence Intensity and Turbine Arrangements on the Power Generation Efficiency of Large Wind Farms
,”
Wind Energy
,
23
(
7
), pp.
1640
1655
.
You do not currently have access to this content.