Abstract

Wind energy is a key contributor to renewable energy production. Vertical axis wind turbine (VAWT) of Savonius type is advantageous in places of small-scale power production and low wind speed regions. It is a VAWT of the drag-based type. The disadvantage of a Savonius rotor is its low efficiency due to the generation of negative torque on the returning blade. To reduce the negative torque, the performance parameters of a Savonius rotor need to be optimized. The shear-stress transport variant of k–ω turbulence model is used in the current study to compute 2D unsteady Reynolds-averaged Navier–Stokes calculations for an ellipse shape blade Savonius rotor to capture its aerodynamic behavior. The flow complexities, such as vortex generation and circulation, are analyzed for four different azimuthal angles 0deg, 45deg, 90deg, and 135deg for a tip speed ratio (TSR) of 0.8. A rise in CD to 1.0 at TSR equal to 0.9 indicates an adverse pressure gradient region on the forward-moving blade. The circulation studied in the present paper could be of practical importance in situations involving an array of Savonius rotors to find an optimum rotor position and rotational direction as in the case of horizontal axis wind turbine (HAWT).

References

1.
Abraham
,
J.
,
Plourde
,
B.
,
Mowry
,
G.
,
Minkowycz
,
W.
, and
Sparrow
,
E.
,
2012
, “
Summary of Savonius Wind Turbine Development and Future Applications for Small-Scale Power Generation
,”
J. Renew. Sustain. Energy
,
4
(
4
), p.
042703
.
2.
Wong
,
K. H.
,
Chong
,
W. T.
,
Sukiman
,
N. L.
,
Poh
,
S. C.
,
Shiah
,
Y. C.
, and
Wang
,
C. T.
,
2017
, “
Performance Enhancements on Vertical Axis Wind Turbines Using Flow Augmentation Systems: A Review
,”
Renew. Sustain. Energy Rev.
,
73
, pp.
904
921
.
3.
Dewan
,
A.
,
Gautam
,
A.
, and
Goyal
,
R.
,
2021
, “
Savonius Wind Turbines: A Review of Recent Advances in Design and Performance Enhancements
,”
Mater. Today: Proc.
,
47
(
11
), pp.
2976
2983
.
4.
Alom
,
N.
,
Saha
,
U. K.
, and
Dewan
,
A.
,
2021
, “
In the Quest for an Appropriate Turbulence Model for Analyzing the Aerodynamics of a Conventional Savonius (S-Type) Wind Rotor
,”
J. Renew. Sustain. Energy
,
13
(
2
), p.
023313
.
5.
Tania
,
R.
,
Florin
,
R. L.
,
Adriana
,
I. D.
,
Roxana
,
M.
,
Ancuta
,
A.
, and
Florin
,
D.
,
2018
, “
Experimental Investigation on the Influence of Overlap Ratio on Savonius Turbines Performance
,”
Int. J. Renew. Energy Res.
,
8
(
3
), pp.
1791
1799
.
6.
Akwa
,
J. V.
,
da Silva Júnior
,
G. A.
, and
Petry
,
A. P.
,
2012
, “
Discussion on the Verification of the Overlap Ratio Influence on Performance Coefficients of a Savonius Wind Rotor Using Computational Fluid Dynamics
,”
Renew. Energy
,
38
(
1
), pp.
141
149
.
7.
Hassanzadeh
,
R.
, and
Mohammadnejad
,
M.
,
2019
, “
Effects of Inward and Outward Overlap Ratios on the Two-Blade Savonius Type of Vertical Axis Wind Turbine Performance
,”
Int. J. Green Energy
,
16
(
15
), pp.
1485
1496
.
8.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single-Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
.
9.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2010
, “
Optimization of Savonius Turbines Using an Obstacle Shielding the Returning Blade
,”
Renew. Energy
,
35
(
11
), pp.
2618
2626
.
10.
Abdelaziz
,
K. R.
,
Nawar
,
M. A.
,
Ramadan
,
A.
,
Attai
,
Y. A.
, and
Mohamed
,
M. H.
,
2022
, “
Performance Improvement of a Savonius Turbine by Using Auxiliary Blades
,”
Energy
,
244
, p.
122575
.
11.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Investigations on Single-Stage, Two-Stage and Three-Stage Conventional Savonius Rotor
,”
Int. J. Energy Res.
,
32
(
10
), pp.
877
895
.
12.
Frikha
,
S.
,
Driss
,
Z.
,
Ayadi
,
E.
,
Masmoudi
,
Z.
, and
Abid
,
M. S.
,
2016
, “
Numerical and Experimental Characterization of Multi-Stage Savonius Rotors
,”
Energy
,
114
, pp.
382
404
.
13.
Ali
,
M. H.
,
2013
, “
Experimental Comparison Study for Savonius Wind Turbine of Two & Three Blades at Low Wind Speed
,”
Int. J. Modern Eng. Res.
,
3
(
5
), pp.
2978
2986
.
14.
Wenehenubun
,
F.
,
Saputra
,
A.
, and
Sutanto
,
H.
,
2015
, “
An Experimental Study on the Performance of Savonius Wind Turbines Related With the Number of Blades
,”
Energy Proc.
,
68
, pp.
297
304
.
15.
Zhao
,
T.
,
Zhang
,
X.
,
Zheng
,
M.
,
Teng
,
H.
, and
Wei
,
L.
,
2019
, “
Variation of Energy Utilization Efficiency With Respect to Inlet Wind Speed for Eight-Blade Modified Savonius Rotor by CFD Approach
,”
Int. J. Green Energy
,
16
(
14
), pp.
1287
1294
.
16.
Kalluvila
,
J. B.
, and
Sreejith
,
B.
,
2018
, “
Numerical and Experimental Study on a Modified Savonius Rotor With Guide Blades
,”
Int. J. Green Energy
,
15
(
12
), pp.
744
757
.
17.
Kothe
,
L. B.
,
Möller
,
S. V.
, and
Petry
,
A. P.
,
2020
, “
Numerical and Experimental Study of a Helical Savonius Wind Turbine and a Comparison With a Two-Stage Savonius Turbine
,”
Renew. Energy
,
148
, pp.
627
638
.
18.
Lee
,
J. H.
,
Lee
,
Y. T.
, and
Lim
,
H. C.
,
2016
, “
Effect of Twist Angle on the Performance of Savonius Wind Turbine
,”
Renew. Energy
,
89
, pp.
231
244
.
19.
Saad
,
A. S.
,
Elwardany
,
A.
,
El-Sharkawy
,
I. I.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2021
, “
Performance Evaluation of a Novel Vertical Axis Wind Turbine Using Twisted Blades in Multi-Stage Savonius Rotors
,”
Energy Convers. Manage.
,
235
, p.
114013
.
20.
Sanusi
,
A.
,
Soeparman
,
S.
,
Wahyudi
,
S.
, and
Yaliati
,
L.
,
2016
, “
Experimental Study of Combined Blade Savonius Wind Turbine
,”
Int. J. Renew. Energy Res.
,
6
(
2
), pp.
614
619
.
21.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Performance Evaluation of Vent-Augmented Elliptical-Bladed Savonius Rotors by Numerical Simulation and Wind Tunnel Experiments
,”
Energy
,
152
, pp.
277
290
.
22.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renew. Energy
,
60
, pp.
578
585
.
23.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Influence of Blade Profiles on Savonius Rotor Performance: Numerical Simulation and Experimental Validation
,”
Energy Convers. Manage.
,
186
, pp.
267
277
.
24.
Lajnef
,
M.
,
Mosbahi
,
M.
,
Chouaibi
,
Y.
, and
Driss
,
Z.
,
2020
, “
Performance Improvement in a Helical Savonius Wind Rotor
,”
Arabian J. Sci. Eng.
,
45
(
11
), pp.
9305
9323
.
25.
Banerjee
,
A.
,
2019
, “
Performance and Flow Analysis of an Elliptic Bladed Savonius-Style Wind Turbine
,”
J. Renew. Sustain. Energy
,
11
(
3
), p.
033307
.
26.
Amiri
,
M.
,
Kahrom
,
M.
, and
Teymourtash
,
A. R.
,
2019
, “
Aerodynamic Analysis of a Three-Bladed Pivoted Savonius Wind Turbine: Wind Tunnel Testing and Numerical Simulation
,”
J. Appl. Fluid Mech.
,
12
(
3
), pp.
819
829
.
27.
Al-Ghriybah
,
M.
,
Zulkafli
,
M. F.
,
Didane
,
D. H.
, and
Mohd
,
S.
,
2021
, “
The Effect of Spacing Between Inner Blades on the Performance of the Savonius Wind Turbine
,”
Sustain. Energy Technol. Assess.
,
43
, p.
100988
.
28.
Guo
,
F.
,
Song
,
B.
,
Mao
,
Z.
, and
Tian
,
W.
,
2020
, “
Experimental and Numerical Validation of the Influence on Savonius Turbine Caused by Rear Deflector
,”
Energy
,
196
, p.
117132
.
29.
Mohamed
,
M. H.
,
Alqurashi
,
F.
, and
Thévenin
,
D.
,
2021
, “
Performance Enhancement of a Savonius Turbine Under Effect of Frontal Guiding Plates
,”
Energy Rep.
,
7
, pp.
6069
6076
.
30.
Layeghmand
,
K.
,
Ghiasi Tabari
,
N.
, and
Zarkesh
,
M.
,
2020
, “
Improving Efficiency of Savonius Wind Turbine by Means of an Airfoil-Shaped Deflector
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
10
), pp.
1
12
.
31.
Nimvari
,
M. E.
,
Fatahian
,
H.
, and
Fatahian
,
E.
,
2020
, “
Performance Improvement of a Savonius Vertical Axis Wind Turbine Using a Porous Deflector
,”
Energy Convers. Manage.
,
220
, p.
113062
.
32.
Aboujaoude
,
H.
,
Beaumont
,
F.
,
Murer
,
S.
,
Polidori
,
G.
, and
Bogard
,
F.
,
2022
, “
Aerodynamic Performance Enhancement of a Savonius Wind Turbine Using an Axisymmetric Deflector
,”
J. Wind Eng. Ind. Aerodyn.
,
220
, p.
104882
.
33.
Wekesa
,
D. W.
,
Wang
,
C.
,
Wei
,
Y.
, and
Zhu
,
W.
,
2016
, “
Experimental and Numerical Study of Turbulence Effect on Aerodynamic Performance of a Small-Scale Vertical Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
157
, pp.
1
14
.
34.
Blackwell
,
B. F.
,
Feltz
,
L. V.
, and
Sheldahl
,
R. E.
,
1977
,
Wind Tunnel Performance Data for Two-and Three-Bucket Savonius Rotors
,
Sandia Laboratories
,
Springfield, VA
.
35.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1994
, “
Experimental Study on the Aerodynamic Performance of a Savonius Rotor
,”
ASME J. Sol. Energy Eng.
,
116
(
3
), pp.
148
152
.
36.
Hayashi
,
T.
,
Li
,
Y.
, and
Hara
,
Y.
,
2005
, “
Wind Tunnel Tests on a Different Phase Three-Stage Savonius Rotor
,”
JSME Int. J. Ser. B Fluids Thermal Eng.
,
48
(
1
), pp.
9
16
.
37.
D’Alessandro
,
V.
,
Montelpare
,
S.
,
Ricci
,
R.
, and
Secchiaroli
,
A.
,
2010
, “
Unsteady Aerodynamics of a Savonius Wind Rotor: A New Computational Approach for the Simulation of Energy Performance
,”
Energy
,
35
(
8
), pp.
3349
3363
.
38.
Dobrev
,
I.
, and
Massouh
,
F.
,
2011
, “
CFD and PIV Investigation of Unsteady Flow Through Savonius Wind Turbine
,”
Energy Proc.
,
6
, pp.
711
720
.
39.
Ramadan
,
A.
,
Yousef
,
K.
,
Said
,
M.
, and
Mohamed
,
M. H.
,
2018
, “
Shape Optimization and Experimental Validation of a Drag Vertical Axis Wind Turbine
,”
Energy
,
151
, pp.
839
853
.
40.
Amiri
,
M.
, and
Anbarsooz
,
M.
,
2019
, “
Improving the Energy Conversion Efficiency of a Savonius Rotor Using Automatic Valves
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031017
.
41.
Yuwono
,
T.
,
Sakti
,
G.
,
Aulia
,
F. N.
, and
Wijaya
,
A. C.
,
2020
, “
Improving the Performance of Savonius Wind Turbine by Installation of a Circular Cylinder Upstream of Returning Turbine Blade
,”
Alexandria Eng. J.
,
59
(
6
), pp.
4923
4932
.
42.
Talukdar
,
P. K.
,
Alom
,
N.
,
Rathod
,
U. H.
, and
Kulkarni
,
V.
,
2022
, “
Alternative Blade Profile Based on Savonius Concept for Effective Wind Energy Harvesting
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
041304
.
43.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Examining the Aerodynamic Drag and Lift Characteristics of a Newly Developed Elliptical-Bladed Savonius Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051201
.
44.
Ramarajan
,
J.
, and
Jayavel
,
S.
,
2022
, “
Numerical Study on the Effect of Out-of-Phase Wavy Confining Walls on the Performance of Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
226
, p.
105023
.
45.
Menter
,
F.
,
1994
, “
Two Equation Eddy-Viscosity Turbulence Modeling for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
46.
Marinić-Kragić
,
I.
,
Vučina
,
D.
, and
Milas
,
Z.
,
2020
, “
Computational Analysis of Savonius Wind Turbine Modifications Including Novel Scooplet-Based Design Attained Via Smart Numerical Optimization
,”
J. Cleaner Prod.
,
262
, p.
121310
.
47.
Marinić-Kragić
,
I.
,
Vučina
,
D.
, and
Milas
,
Z.
,
2022
, “
Global Optimization of Savonius-Type Vertical Axis Wind Turbine With Multiple Circular-Arc Blades Using Validated 3D CFD Model
,”
Energy
,
241
, p.
122841
.
48.
Putri
,
N. P.
,
Yuwono
,
T.
,
Rustam
,
J.
,
Purwanto
,
P.
, and
Bangga
,
G.
,
2019
, “
Experimental Studies on the Effect of Obstacle Upstream of a Savonius Wind Turbine
,”
SN Appl. Sci.
,
1
(
10
), pp.
1
7
.
49.
Ducoin
,
A.
,
Shadloo
,
M. S.
, and
Roy
,
S.
,
2017
, “
Direct Numerical Simulation of Flow Instabilities Over Savonius Style Wind Turbine Blades
,”
Renew. Energy
,
105
, pp.
374
385
.
You do not currently have access to this content.