Abstract

Natural gas and renewable energy sources make up an increasingly large proportion of power generation due to their being environmentally friendly. Because of the intermittent and fluctuating output of renewable energy sources, the emerging technology of power-to-gas (P2G) units is of great significance to alleviate. This paper focuses on the coordinated optimization of the combined gas and electricity network (CGEN) system with bidirectional energy conversion. Gas-fired power generation (GPG) plants and P2G are considered as linkages between the two networks. A unified CGEN mathematical model is established with the minimum operation cost as the objective function. The injection and production process of underground natural gas storage (UNGS) is also taken into consideration that is not available in other literature. Variables such as the output of P2G and gas-fired power generation plants, the supply of UNGS, and the wind curtailment are optimized correspondingly. The improved 24-node power grid (PG) and Belgium 20-node natural gas pipeline network (NGPN) are adopted to test the validity and capability of the proposed model, and then we compare the results CGEN model with the single Belgium NGPN to analyze the impact on the NGPN. Moreover, we adopt a coupled operation system of a 6-node power system and a 7-node NGPN to further analyze the influence of P2G on the CGEN. The results show that compared with the system without P2G, the total operating cost of the system is reduced by 9.39%, the natural gas load shedding is reduced by 26.1%, and the wind curtailment is reduced from 326 MWh to zero.

References

1.
Ye
,
P.
,
bin Zhang
,
Z.
,
Wang
,
H.
,
jiao Guan
,
D.
,
li Zhang
,
M.
, and
Zhang
,
N.
,
2022
, “
Current Status and Prospects of Research on New Urban User-Side Energy Interconnection System Planning
,”
J. Phys.: Conf. Ser.
,
2195
(
1)
, p.
012025
.
2.
Sorrenti
,
I.
,
Harild Rasmussen,
,
T. B.
,
You,
,
S.
, and
Wu,
,
Q.
,
2022
, “
The Role of Power-to-X in Hybrid Renewable Energy Systems: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
165
(
9
), p.
112380
.
3.
Shahidehpour
,
M. O.
,
Fu
,
Y.
, and
Wiedman
,
T.
,
2005
, “
Impact of Natural Gas Infrastructure on Electric Power Systems
,”
Proc. IEEE
,
93
(
5
), pp.
1042
1056
.
4.
Chaudry
,
M.
,
Jenkins
,
N.
, and
Strbac
,
G.
,
2008
, “
Multi-time Period Combined Gas and Electricity Network Optimisation
,”
Electr. Power Syst. Res.
,
78
(
7
), pp.
1265
1279
.
5.
Martinez-Mares
,
A.
, and
Fuerte-Esquivel
,
C. R.
,
2012
, “
A Unified Gas and Power Flow Analysis in Natural Gas and Electricity Coupled Networks
,”
IEEE Trans. Power Syst.
,
27
(
4
), pp.
2156
2166
.
6.
Chaudry
,
M.
,
Jenkins
,
N.
,
Qadrdan
,
M.
, and
Wu
,
J.
,
2014
, “
Combined Gas and Electricity Network Expansion Planning
,”
Appl. Energy
,
113
(
1
), pp.
1171
1187
.
7.
Jooshaki
,
M.
,
Abbaspour
,
A.
,
Fotuhi-Firuzabad
,
M.
,
Moeini-Aghtaie
,
M.
, and
Lehtonen
,
M.
,
2019
, “
Multistage Expansion Co-planning of Integrated Natural Gas and Electricity Distribution Systems
,”
Energies
,
12
(
6
), p.
1020
.
8.
Gahleitner
,
G.
,
2013
, “
Hydrogen From Renewable Electricity: An International Review of Power-to-Gas Pilot Plants for Stationary Applications
,”
Int. J. Hydrogen Energy
,
38
(
5
), pp.
2039
2061
.
9.
Clegg
,
S.
, and
Mancarella
,
P.
,
2015
, “
Integrated Modeling and Assessment of the Operational Impact of Power-to-Gas (P2G) on Electrical and Gas Transmission Networks
,”
IEEE Trans. Sustain. Energy
,
6
(
4
), pp.
1234
1244
.
10.
Liu
,
C.
,
Shahidehpour
,
M.
, and
Wang
,
J.
,
2011
, “
Coordinated Scheduling of Electricity and Natural Gas Infrastructures With a Transient Model for Natural Gas Flow
,”
Chaos
,
21
(
2
), p.
025102
.
11.
Fang
,
J.
,
Zeng
,
Q.
,
Ai
,
X.
,
Chen
,
Z.
, and
Wen
,
J.
,
2017
, “
Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems
,”
IEEE Trans. Sustain. Energy
,
9
(
1
), pp.
188
198
.
12.
He
,
C.
,
Wu
,
L.
,
Liu
,
T.
, and
Bie
,
Z.
,
2017
, “
Robust Co-optimization Planning of Interdependent Electricity and Natural Gas Systems With a Joint N-1 and Probabilistic Reliability Criterion
,”
IEEE Trans. Power Syst.
,
33
(
2
), pp.
2140
2154
.
13.
Mukherjee
,
U.
,
Elsholkami
,
M.
,
Walker
,
S.
,
Fowler
,
M.
,
Elkamel
,
A.
, and
Hajimiragha
,
A.
,
2015
, “
Optimal Sizing of an Electrolytic Hydrogen Production System Using an Existing Natural Gas Infrastructure
,”
Int. J. Hydrogen Energy
,
40
(
31
), pp.
9760
9772
.
14.
Wang
,
S.
, and
Yuan
,
S.
,
2020
, “
Interval Optimization for Integrated Electrical and Natural-Gas Systems With Power to Gas Considering Uncertainties
,”
Int. J. Electr. Power Energy Syst.
,
119
(
7
), p.
105906
.
15.
Qadrdan
,
M.
,
Abeysekera
,
M.
,
Chaudry
,
M.
,
Wu
,
J.
, and
Jenkins
,
N.
,
2015
, “
Role of Power-to-Gas in an Integrated Gas and Electricity System in Great Britain
,”
Int. J. Hydrogen Energy
,
40
(
17
), pp.
5763
5775
.
16.
Zeng
,
Q.
,
Zhang
,
B.
,
Fang
,
J.
, and
Chen
,
Z.
,
2017
, “
A Bi-level Programming for Multistage Co-expansion Planning of the Integrated Gas and Electricity System
,”
Appl. Energy
,
200
(
8
), pp.
192
203
.
17.
Grueger
,
F.
,
Möhrke
,
F.
,
Robinius
,
M.
, and
Stolten
,
D.
,
2017
, “
Early Power to Gas Applications: Reducing Wind Farm Forecast Errors and Providing Secondary Control Reserve
,”
Appl. Energy
,
192
(
4
), pp.
551
562
.
18.
Zhang
,
J.
,
Cho
,
H.
, and
Mago
,
P. J.
,
2022
, “
Design and Optimization of Integrated Distributed Energy Systems for Off-Grid Buildings
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
070902
.
19.
Rezaei
,
N.
, and
Pezhmani
,
Y.
,
2022
, “
Optimal Islanding Operation of Hydrogen Integrated Multi-microgrids Considering Uncertainty and Unexpected Outages
,”
J. Energy Storage
,
49
(
5
), p.
104142
.
20.
Nasiri
,
N.
,
Sadeghi Yazdankhah
,
A.
,
Mirzaei
,
M. A.
,
Loni
,
A.
,
Mohammadi-Ivatloo
,
B.
,
Zare
,
K.
, and
Marzband
,
M.
,
2021
, “
Interval Optimization-Based Scheduling of Interlinked Power, Gas, Heat, and Hydrogen Systems
,”
IET Renew. Power Gener.
,
15
(
6
), pp.
1214
1226
.
21.
Ding
,
L.
,
Gao
,
J.
,
Shi
,
G.
, and
Ni,
Z.
,
2022
, “
Robust Optimal Dispatch of Integrated Energy System Considering With Coupled Wind and Hydrogen System
,”
J. Phys.: Conf. Ser.
,
2215
(
1), p.
012001
.
22.
Safaie
,
A. A.
,
Bidgoli
,
M. A.
, and
Javadi
,
S.
,
2022
, “
A Multi-objective Optimization Framework for Integrated Electricity and Natural Gas Networks Considering Smart Homes in Downward Under Uncertainties
,”
Energy
,
239
(
1
), p.
122214
.
23.
The People’s Republic of China National Energy Administration
,
2019,
China Natural Gas Development Report
.
The People’s Republic of China National Energy Administration
.
24.
Żymełka
,
P.
,
Szega
,
M.
, and
Madejski
,
P.
,
2020
, “
Techno-Economic Optimization of Electricity and Heat Production in a Gas-Fired Combined Heat and Power Plant With a Heat Accumulator
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022101
.
25.
Qandil
,
M. D.
,
Abbas
,
A. I.
,
Al Hamad
,
S.
,
Saadeh
,
W.
, and
Amano
,
R. S.
,
2022
, “
Performance of Hybrid Renewable Energy Power System for a Residential Building
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
041301
.
26.
Câmara
,
R. J.
,
Carneiro
,
J. F.
,
Câmara
,
G. A.
,
de Araújo
,
P. S.
,
Rocha
,
P. S.
, and
Andrade
,
J. C.
,
2020
, “
Methodology for Sub-commercial Calculation of the Potential Energy Storage Capacity of Hydrogen, Natural Gas, and Compressed Air in Salt Caves
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042007
.
27.
Modahl
,
I. S.
,
Nyland
,
C. A.
,
Raadal
,
H. L.
,
Kårstad
,
O.
,
Torp
,
T. A.
, and
Hagemann
,
R.
,
2011
, “
Life Cycle Assessment of Gas Power With CCS—A Study Showing the Environmental Benefits of System Integration
,”
Energy Procedia.
,
4
(
9
), pp.
2470
2477
.
28.
Sun
,
G.
,
Sun
,
J.
,
Chen
,
S.
,
Wei
,
Z.
, and
Zang
,
H.
,
2022
, “
Market-Based Coordination of Regional Electric and Natural Gas Systems: A Peer-to-Peer Energy Trading Model
,”
CSEE J. Power Energy Syst.
29.
De Wolf
,
D.
, and
Smeers
,
Y.
,
2000
, “
The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm
,”
Manage. Sci.
,
46
(
11
), pp.
1454
1465
.
30.
Ordoudis
,
C.
,
Pinson
,
P.
,
Morales
,
J. M.
, and
Zugno
,
M.
,
2016
, “
An Updated Version of the IEEE RTS 24-Bus System for Electricity Market and Power System Operation Studies
,”
Technical University of Denmark
.
31.
Liu
,
C.
,
Shahidehpour
,
M.
,
Fu
,
Y.
, and
Li
,
Z.
,
2009
, “
Security-Constrained Unit Commitment With Natural Gas Transmission Constraints
,”
IEEE Trans. Power Syst.
,
24
(
3
), pp.
1523
1536
.
You do not currently have access to this content.