The Smagorinsky subgrid-scale model, a dynamic subgrid-scale model, and a stimulated subgrid-scale model have been used in a large eddy simulation (LES) program to compute airflow in a room. A fast Fourier transformation (FFT) method and a conventional iteration method were used in solving the Poisson equation. The predicted distributions of indoor air velocity, temperature, and contaminant concentrations show that the three subgrid-scale models can produce acceptable results for indoor environment design. The dynamic and stimulated models performed slightly better than the Smagorinsky model. The use of FFT can significantly reduce the computing time. LES is a tool of the next generation of indoor air distribution design.

1.
Chen
,
Q.
,
1997
, “
Computational fluid dynamics for HVAC: successes and failures
,”
ASHRAE Trans.
,
103
, Part 1, pp.
178
187
.
2.
Lesieur, M., 1997, Turbulence in Fluids (third revised and enlarged edition), Kluwer Academic Publishers, Dordrecht.
3.
Piomelli
,
U.
,
1999
, “
Large Eddy simulation: achievements and challenges
,”
Prog. Aerosp. Sci.
,
35
, pp.
335
362
.
4.
Lesieur
,
M.
, and
Metais
,
O.
,
1996
, “
New trends in large eddy simulations of turbulence
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
45
82
.
5.
Shah, K. B., and Ferziger, J. H., 1995, “A new non-eddy viscosity subgrid-scale model and its application to channel flow,” Center for Turbulence Research Annual Research Briefs.
6.
Smagorinsky
,
J.
,
1963
, “
General circulation experimental with the primitive equations
,”
Mon. Weather Rev.
,
91
, pp.
99
164
.
7.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
,
3
, pp.
1760
64
.
8.
Piomelli
,
U.
,
Cabot
,
W. H.
,
Moin
,
P.
, and
Lee
,
S.
,
1991
, “
Subgrid scale backscatter in turbulent and transitional flows
,”
Phys. Fluids A
,
3
, No.
11
, pp.
1766
71
.
9.
Lilly
,
D. K.
,
1992
, “
A proposed modification of the Germano subgrid-scale closure method
,”
Phys. Fluids A
,
4
, No.
3
, pp.
633
635
.
10.
Zhang
,
W.
, and
Chen
,
Q.
,
2000
, “
Large eddy simulation of natural and mixed convection airflow indoors with two simple filtered dynamic subgrid scale models
,”
Numer. Heat Transfer, Part A
,
37
, No.
5
, pp.
447
463
.
11.
Chorin, A. J., 1968, “Numerical solution of incompressible flow problem,” Studies in Numerical Analysis 2, Society for Industrial and Applied Mathematics, Philadelphia, PA, pp. 64–70.
12.
Su, M. D., 1993, “LES of turbulent flow in straight/curve duct,” Ph.D. thesis, Techinesche Universitaet Muenchen, Germany.
13.
McGrattan, K. B., Baum, H. R., Rehm, R. G., Hamins, A., and Forney, G. P., 1999, “Fire dynamics simulator: technical reference guide,” National Institute of Standards and Technology (NIST).
14.
Peskin
,
C. S.
,
1972
, “
Flow patterns around heart valves: a numerical method
,”
J. Comput. Phys.
,
10
, pp.
252
271
.
15.
Goldstein
,
D.
,
Handler
,
R.
, and
Sivovich
,
L.
,
1995
, “
Direct numerical simulation of turbulent flow over a modeled riblet covered surface
,”
J. Fluid Mech.
,
302
, pp.
333
376
.
16.
Restivo, A., 1979, “
Turbulent flow in ventilated rooms,” Ph.D. thesis, University of London, UK.
17.
Wilcox, D. C., 1988, Turbulence modeling for CFD (second edition), DCW industries, La Canada, CA.
18.
Murakami
,
S.
,
1998
, “
Overview of turbulence models applied in CWE, 1997
,”
J. Wind. Eng. Ind. Aerodyn.
,
74-76
, pp.
1
24
.
19.
Cheesewright, R., King, K. J., and Ziai, S., 1986, “Experimental data for validation of computer codes for prediction of two-dimensional buoyant cavity flows,” ASME Winter Annual Meeting, HTD-60, Anaheim, pp. 75–81.
20.
Yuan
,
X.
,
Chen
,
Q.
,
Glicksman
,
L. R.
,
Hu
,
Y.
, and
Yang
,
X.
,
1999
, “
Measurements and computations of room airflow with displacement ventilation
,”
ASHRAE Trans.
,
105
, No.
1
, pp.
340
352
.
21.
Stolz
,
S.
, and
Adams
,
N. A.
,
1999
, “
An approximate deconvolution procedure for large-eddy simulation
,”
Phys. Fluids
,
11
, No.
7
, pp.
1699
1701
.
You do not currently have access to this content.