Implicit turbulence modeling is the numerical simulation of high Reynolds fluid flow using nonoscillatory finite volume (NFV) schemes without any explicit subgrid scale model. Here we investigate the ability of a particular NFV scheme, MPDATA, to simulate decaying turbulence in a triply periodic cube for a variety of viscosities, comparing our results to analogous pseudo-spectral studies. In the regime of direct numerical simulation, MPDATA is shown to agree closely with the pseudo-spectral results. As viscosity is reduced, the two model results diverge. We study the MPDATA results in the inviscid limit, using a combination of mathematical analysis and computational experiment. We validate these results as representing the turbulent flow in the limit of very high Reynolds number.

1.
Clarke, A. C., 1973, Profiles of the Future, Harper & Row, New York, p. 21.
2.
Oran
,
E. S.
, and
Boris
,
J. P.
,
1993
, “
Computing Turbulent Shear Flows—A Convenient Conspiracy
,”
Comput. Phys.
,
7
, pp.
523
533
.
3.
Porter
,
D. H.
,
Pouquet
,
A.
, and
Woodward
,
P. R.
,
1994
, “
Kolmogorov-Like Spectra in Decaying Three-Dimensional Supersonic Flows
,”
Phys. Fluids
,
6
, pp.
2133
2142
.
4.
Linden
,
P. F.
,
Redondo
,
J. M.
, and
Youngs
,
D. L.
,
1994
, “
Molecular Mixing in Rayleigh-Taylor Instability
,”
J. Fluid Mech.
,
265
, pp.
97
124
.
5.
Fureby
,
C.
, and
Grinstein
,
F. F.
,
1999
, “
Monotonically Integrated Large Eddy Simulation of Free Shear Flows
,”
AIAA J.
,
37
, pp.
544
556
.
6.
Smolarkiewicz
,
P. K.
, and
Margolin
,
L. G.
,
1998
, “
MPDATA: A Finite Difference Solver for Geophysical Flows
,”
J. Comput. Phys.
,
140
, pp.
459
480
.
7.
Margolin
,
L. G.
,
Smolarkiewicz
,
P. K.
, and
Sorbjan
,
Z.
,
1999
, “
Large Eddy Simulations of Convective Boundary Layers Using Nonoscillatory Differencing
,”
Physica D
,
133
, pp.
390
397
.
8.
Smolarkiewicz
,
P. K.
, and
Margolin
,
L. G.
,
1997
, “
On Forward-in-Time Differencing for Fluids; An Eulerian/Semi-Lagrangian Nonhydrostatic Model for Stratified Flows
,”
Atmos.-Ocean.
,
35
, pp.
127
152
.
9.
Smolarkiewicz
,
P. K.
,
Margolin
,
L. G.
, and
Wyszogrodzki
,
A. A.
,
2001
, “
A Class of Nonhydrostatic Global Models
,”
J. Atmos. Sci.
,
58
, pp.
349
364
.
10.
Margolin
,
L. G.
, and
Rider
,
W. J.
,
2001
, “
A Rationale for Implicit Turbulence Modeling
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
821
841
.
11.
Frisch, U., 1995, Turbulence, The Legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, UK.
12.
Herring
,
J. R.
, and
Kerr
,
R. M.
,
1993
, “
Development of Enstrophy and Spectra in Numerical Turbulence
,”
Phys. Fluids A
,
5
, pp.
2792
2798
.
13.
Kolmogorov
,
A. N.
,
1941
, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Dokl. Akad. Nauk SSSR
,
30
, pp.
301
305
.
14.
Smolarkiewicz
,
P. K.
, and
Margolin
,
L. G.
,
1993
, “
On Forward-in-Time Differencing for Fluids
,”
Mon. Weather Rev.
,
121
, pp.
1847
1859
.
15.
Smolarkiewicz
,
P. K.
, and
Margolin
,
L. G.
,
1994
, “
Variational Solver for Elliptic Problems in Atmospheric Flows
,”
Appl. Math. Comput.
,
4
, pp.
527
551
.
16.
Prusa
,
J. M.
,
Smolarkiewicz
,
P. K.
, and
Wyszogrodzki
,
A. A.
, 2001, “Simulations of Gravity Wave Induced Turbulence Using 512 PE CRAY T3E,” Int. J. Appl. Math. Comput. Sci., 11, pp. 101–115.
17.
Smagorinsky, J., 1993, “Some Historical Remarks on the Use of Nonlinear Viscosities,” Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge University Press, Cambridge, UK, pp. 3–36.
18.
Domaradzki
,
J. A.
, and
Loh
,
K-C.
,
1999
, “
The Subgrid-Scale Estimation Model in the Physical Space Representation
,”
Phys. Fluids
,
11
, pp.
2330
2342
.
19.
Geurts
,
B. J.
,
1997
, “
Inverse Modeling for Large-Eddy Simulation
,”
Phys. Fluids
,
9
, pp.
3585
3587
.
20.
Stolz
,
S.
, and
Adams
,
N. A.
,
1999
, “
An Approximate Deconvolution Procedure for Large-Eddy Simulation
,”
Phys. Fluids
,
11
, pp.
1699
1701
.
21.
Lohse
,
D.
, and
Miller-Groeling
,
A.
,
1995
, “
Bottleneck Effects in Turbulence: Scaling Phenomena in r-Versus p-space
,”
Phys. Rev. Lett.
,
74
, pp.
1747
1750
.
You do not currently have access to this content.