A finite element model and its equivalent electronic analogue circuit has been developed for fluid transients in hydraulic transmission lines with laminar frequency-dependent friction. Basic equations are approximated to be a set of ordinary differential equations that can be represented in state-space form. The accuracy of the model is demonstrated by comparison with the method of characteristics.

1.
Evangelisti
,
G.
,
1965
, “
Teoria generale del colpo d’ariete col metodo delle caratteristiche
,”
L’ Energ´ia Elettrica
,
42
, pp.
65
145
.
2.
Evangelisti
,
G.
,
1969
, “
Waterhammer Analysis by the Method of Characteristics
,”
L’ Energ´ia Elettrica
,
46
, pp.
673
839
.
3.
Gray
,
C. A. M.
,
1954
, “
The Analysis of the Dissipation of Energy in Water Hammer
,”
Aust. J. Appl. Sci.
,
5
, pp.
125
131
.
4.
Streeter
,
V. L.
, and
Lai
,
C.
,
1962
, “
Water-Hammer Analysis Including Fluid Friction
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
88
, pp.
79
112
.
5.
Shu, J.-J., Burrows, C. R., and Edge, K. A., 1997, “Pressure Pulsations in Reciprocating Pump Piping Systems Part 1: Modelling,” Proceedings of the Institution of Mechanical Engineers, Part I, Journal of Systems and Control Engineering, 211, pp. 229–237.
6.
Wylie, E. B., and Streeter, V. L., 1978, Fluid Transients, McGraw-Hill, New York.
7.
Shu, J.-J., Edge, K. A., Burrows, C. R., and Xiao, S., 1993, “Transmission Line Modelling With Vaporous Cavitation,” ASME Paper No. 93-WA/FPST-2.
8.
Shu, J.-J., 1995, “On Modelling Vaporous Cavitation,” Proceedings of the Second Academic Conference of Young Scientists, China Association for Science and Technology, Beijing, China, pp. 124–135 (in Chinese).
9.
Rachford, H. H., Jr., and Ramsey, E. L., 1975, “Application of Variational Methods to Model Transient Flow in Complex Liquid Transmission Systems,” SPE 5663, Society of Petroleum Engineers of AIME, 50th Annual Fall Meeting, Dallas, TX.
10.
Watt, C. S., Boldy, A. P., and Hobbs, J. M., 1980, “Combination of Finite Difference and Finite Element Techniques in Hydraulic Transient Problems,” Proceedings of the Third International Conference on Pressure Surges, Canterbury, UK, BHRA Fluid Engineering 1, pp. 43–62.
11.
Paygude, D. G., Rao, B. V., and Joshi, S. G., 1985, “Fluid Transients Following a Valve Closure by FEM,” Proceedings of International Conference on Finite Elements in Computational Mechanics (FEICOM 85), Bombay, India, T. Kant ed., Pergamon Press, Elmsford, NY pp. 615–624.
12.
Wylie, E. B., and Streeter, V. L., 1993, Fluid Transients in Systems, Prentice-Hall, Englewood Cliffs, NJ.
13.
Galerkin
,
B. G.
,
1915
, “
Series Development for Some Cases of Equilibrium of Plates and Beams
,”
Wjestnik Ingenerow Petrograd
,
19
, pp.
897
897
(in Russian).
14.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
, pp.
109
115
.
15.
Kagawa
,
T.
,
Lee
,
I.-Y.
,
Kitagawa
,
A.
, and
Takenaka
,
T.
,
1983
, “
High Speed and Accurate Computing Method of Frequency-Dependent Friction in Laminar Pipe Flow for Characteristics Method
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
49
, pp.
2638
2644
(in Japanese).
16.
Horowitz, P., and Hill, W., 1980, The Art of Electronics, Cambridge University Press, Cambridge, UK.
17.
Zverev, A. I., 1967, Handbook of Filter Synthesis, John Wiley and Sons, New York.
18.
Lee
,
I.-Y.
,
Kitagawa
,
A.
, and
Takenaka
,
T.
,
1985
, “
On the Transient Behavior of Oil Flow Under Negative Pressure
,”
Bull. JSME
,
28
, pp.
1097
1104
.
19.
Hairer, E., Nørsett, S. P., and Wanner, G., 1987, Solving Ordinary Differential Equations, I: Nonstiff Problems, Springer-Verlag, Berlin.
20.
Dormand
,
J. R.
, and
Prince
,
P. J.
,
1980
, “
A Family of Embedded Runge-Kutta Formulae
,”
J. Comput. Appl. Math.
,
6
, pp.
19
26
.
You do not currently have access to this content.