A volume tracking method was developed to simulate time-dependent unstable viscous fingering in a Hele-Shaw cell. The effect of finite viscosity ratio μr between displacing and displaced fluids and their interfacial tension σ on finger morphology is investigated. It is shown that there exist four distinct finger patterns, depending upon the viscosity ratio, μr, and Ca, the modified capillary number for constant flow rate, or ΔPs˙W/σ, for constant driving pressure difference. Morphology diagrams are developed to identify the ranges of the dimensionless parameters corresponding to the various finger patterns. The simulation results are validated with experiments.

1.
Hele-Shaw
,
H. J. S.
,
1898
, “
The Flow of Water
,”
Nature (London)
,
58
, p.
34
34
.
2.
Saffman
,
P. G.
, and
Taylor
,
G. I.
,
1958
, “
The Pentration of a Fluid Into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid,”
Proc. R. Soc. London, Ser. A
,
245
, p.
312
312
.
3.
H., Lamb, 1932, Hydrodynamics, Cambridge Univ. Press, Cambridge, UK.
4.
Park
,
C. W.
, and
Homsy
,
G. M.
,
1985
, “
The Instability of Long Fingers in Hele-Shaw Flows
,”
Phys. Fluids
,
28
(
6
), p.
1583
1583
.
5.
Maxworthy
,
T.
,
1987
, “
The Nonlinear Growth of a Gravitationally Unstable Interface in a Hele-Shaw Cell
,”
J. Fluid Mech.
,
177
, p.
207
207
.
6.
Kopf-Sill
,
A. R.
, and
Homsy
,
G. M.
,
1987
, “
Narrow Fingers in a Hele-Shaw Cell
,”
Phys. Fluids
,
30
, p.
2607
2607
.
7.
McLean
,
J. W.
, and
Saffman
,
P. G.
,
1981
, “
The Effect of Surface Tension on the Shape of Fingers in a Hele-Shaw Cell
,”
J. Fluid Mech.
,
102
, p.
455
455
.
8.
Shraiman
,
B.
,
1986
, “
Velocity Selection and the Saffman-Taylor Problem
,”
Phys. Rev. Lett.
,
56
, p.
2028
2028
.
9.
Hong
,
D. C.
, and
Langer
,
J.
,
1986
, “
Analytic Theory of the Selection Mechanism in the Saffman-Taylor Problem
,”
Phys. Rev. Lett.
,
56
, p.
2032
2032
.
10.
Kadanoff
,
L. P.
,
1985
, “
Simulating Hydrodynamics: A Pedestrian Model
,”
J. Stat. Phys.
,
39
, p.
267
267
.
11.
Liang
,
S.
,
1986
, “
Random-Walk Simulations of Flow in Hele-Shaw Cells
,”
Phys. Rev. A
,
33
, p.
2663
2663
.
12.
Tang
,
C.
,
1985
, “
Diffusion-Limited Aggregation and the Saffman-Taylor Problem
,”
Phys. Rev. A
,
31
, p.
1977
1977
.
13.
Arneodo
,
A.
,
Elezgaray
,
J.
,
Tabard
,
M.
, and
Tallet
,
F.
,
1996
, “
Statistical Analysis of Off-Lattice Diffusion-Limited Aggregates in Channel and Sector Geometries
,”
Phys. Rev. E
,
53
, p.
6200
6200
.
14.
DeGregoria
,
A. J.
, and
Schwartz
,
L. W.
,
1985
, “
Finger Breakup in Hele-Shaw Cells
,”
Phys. Fluids
,
28
, p.
2313
2313
.
15.
DeGregoria
,
A. J.
, and
Schwartz
,
L. W.
,
1986
, “
A Boundary-Integral Method for Two-Phase Displacement in Hele-Shaw Cells
,”
J. Fluid Mech.
,
164
, p.
383
383
.
16.
Hou
,
T. Y.
,
Lowengrub
,
J. S.
, and
Shelley
,
M. J.
,
1994
, “
Removing the Stiffness From Interfacial Flows With Surface Tension
,”
J. Comput. Phys.
,
114
, p.
312
312
.
17.
Hou
,
T. Y.
,
Lowengrub
,
J. S.
, and
Shelley
,
M. J.
,
2001
, “
Boundary Integral Methods for Multicomponent Fluids and Multiphase Materials
,”
J. Comput. Phys.
,
169
, p.
302
302
.
18.
Nie
,
Q.
, and
Tian
,
F. R.
,
1998
, “
Singularities in Hele-Shaw Flows
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
58
, p.
34
34
.
19.
Tryggvason
,
G.
, and
Aref
,
H.
,
1985
, “
Finger-Interaction Mechanisms in Stratified Hele-Shaw Flow
,”
J. Fluid Mech.
,
154
, p.
287
287
.
20.
Meiburg
,
E.
, and
Homsy
,
G. M.
,
1988
, “
Nonlinear Unstable Viscous Fingers in Hele-Shaw Flows. II. Numerical Simulation
,”
Phys. Fluids
,
31
, p.
429
429
.
21.
Whitaker
,
N.
,
1990
, “
Numerical Simulation of the Hele-Shaw Equations
,”
J. Comput. Phys.
,
90
, p.
176
176
.
22.
Dai
,
W.-S.
, and
Shelley
,
M. J.
,
1993
, “
A Numerical Study of the Effect of Surface Tension and Noise on an Expanding Hele-Shaw Bubble
,”
Phys. Fluids A
,
5
, p.
2131
2131
.
23.
Youngs, D. L., 1982, “Time-Dependent Multi-Material Flow With Large Fluid Distortion,” Numerical Methods for Fluid Dynamics, Academic Press, New York, p. 273.
24.
Rider
,
W. J.
, and
Kothe
,
D. B.
,
1998
, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
,
141
, p.
112
112
.
25.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
, p.
201
201
.
26.
Chorin
,
A. J.
,
1985
, “
Curvature and Solidification
,”
J. Comput. Phys.
,
57
, p.
472
472
.
27.
Zimmerman
,
W. B.
, and
Homsy
,
G. M.
,
1992
, “
Viscous Fingering in Miscible Displacements: Unification of Effects of Viscosity Contrast, Anisotropic Dispersion, and Velocity Dependence of Dispersion on Nonlinear Finger Propagation
,”
Phys. Fluids A
,
4
, p.
2348
2348
.
28.
Petitjeans
,
P.
,
Chen
,
C.-Y.
,
Meiburg
,
E.
, and
Maxworthy
,
T.
,
1999
, “
Miscible Quarter Five-Spot Displacements in a Hele-Shaw Cell and the Role of Flow-Induced Dispersion
,”
Phys. Fluids
,
11
, p.
1705
1705
.
You do not currently have access to this content.