Computations are performed to determine the transient three-dimensional heat transfer rates and fluid forces acting on a stream-wise spinning sphere for Reynolds numbers in the range 10⩽Re⩽300 and angular velocities Ωx2. In this Re range, classical flow past a solid sphere develops four different flow regimes, and the effects of particle spin are studied in each regime. Furthermore, the combined effects of particle spin and surface blowing are examined. Sphere spin increases drag in all flow regimes, while lift shows a nonmonotonic behavior. Heat transfer rates are not influenced by spin up to a certain Ωx but increase monotonically thereafter. An interesting feature associated with sphere spin is the development of a special wake regime such that the wake simply spins without temporal variations in its shape. For this flow condition, the magnitudes of the lift, drag, and heat transfer coefficients remain constant in time. Correlations are provided for drag and heat transfer.

1.
Best
,
J. L.
,
1998
, “
The Influence of Particle Rotation on Wake Stability at Particle Reynolds Numbers, ReP<300—Implications for Turbulence Modulation in Two-Phase Flows
,”
Int. J. Multiphase Flow
,
24
, pp.
693
720
.
2.
Kim
,
I.
, and
Pearlstein
,
A.
,
1990
, “
Stability of the Flow Past a Sphere
,”
J. Fluid Mech.
,
211
, pp.
73
93
.
3.
Natarajan
,
R.
, and
Acrivos
,
A.
,
1993
, “
The Instability of the Steady Flow Past Spheres and Disks
,”
J. Fluid Mech.
,
254
, pp.
323
344
.
4.
Tomboulides
,
A. G.
, and
Steven
,
A. O.
,
2000
, “
Numerical Investigation of Transitional and Weak Turbulent Flow Past a Sphere
,”
J. Fluid Mech.
,
416
, pp.
45
73
.
5.
Johnson
,
T. A.
, and
Patel
,
V. C.
,
1999
, “
Flow Past a Sphere up to a Reynolds Number of 300
,”
J. Fluid Mech.
,
378
, pp.
19
70
.
6.
Bagchi
,
P.
, and
Balachandar
,
S.
,
2002
, “
Steady Planar Straining Flow Past a Rigid Sphere at Moderate Reynolds Number
,”
J. Fluid Mech.
,
466
, pp.
365
407
.
7.
Magarvey
,
R. H.
, and
Bishop
,
R. L.
,
1961
, “
Transition Ranges for Three-Dimensional Wakes
,”
Can. J. Phys.
,
39
, pp.
1418
1422
.
8.
Sakamoto
,
H.
, and
Haniu
,
H.
,
1990
, “
A Study on Vortex Shedding From Spheres in a Uniform Flow
,”
ASME J. Fluids Eng.
,
112
, pp.
386
392
.
9.
Sakamoto
,
H.
, and
Haniu
,
H.
,
1995
, “
The Formation Mechanism and Shedding Frequency of Vortices From a Sphere in Uniform Shear Flow
,”
J. Fluid Mech.
,
287
, pp.
151
171
.
10.
Oesterle
,
B.
, and
Dinh
,
B.
,
1998
, “
Experiments on the Lift of a Spinning Sphere in a Range of Intermediate Reynolds Numbers
,”
Exp. Fluids
,
25
, pp.
16
22
.
11.
Salem
,
M. B.
, and
Oesterle
,
B.
,
1998
, “
A Shear Flow Around a Spinning Sphere: Numerical Study at Moderate Reynolds Numbers
,”
Int. J. Multiphase Flow
,
24
, pp.
563
585
.
12.
Kurose
,
R.
, and
Komori
,
S.
,
1999
, “
Drag and Lift Forces on a Rotating Sphere in a Linear Shear Flow
,”
J. Fluid Mech.
,
384
, pp.
183
206
.
13.
Kim
,
D.
, and
Choi
,
H.
,
2002
, “
Laminar Flow Past a Sphere Rotating in the Streamwise Direction
,”
J. Fluid Mech.
,
461
, pp.
365
385
.
14.
Clift, R., Grace, J. R., and Weber, M. E., 1970, Bubbles, Drops and Particles, Academic, New York.
15.
Eastop
,
T. D.
,
1973
, “
The Influence of Rotation on the Heat Transfer From a Sphere to an Air Stream
,”
Int. J. Heat Mass Transfer
,
16
, pp.
1954
1957
.
16.
Furuta
,
T.
,
Jimbo
,
T.
,
Okazaki
,
M.
, and
Toei
,
R.
,
1975
, “
Mass Transfer to a Rotating Sphere in an Axial Stream
,”
J. Chem. Eng. Jpn.
,
8
(
6
), pp.
456
462
.
17.
Lozinski, D., and Matalon, M., 1992, “Vaporization of a Spinning Fuel Droplet,” 24th Symposium (Int.) on Combustion, Institute, Pittsburgh, PA, pp. 1483–1491.
18.
Pearlman
,
H. G.
, and
Sohrab
,
S. H.
,
1991
, “
The Role of Droplet Rotation in Turbulent Spray Combustion Modeling
,”
Combust. Sci. Technol.
,
76
, pp.
321
334
.
19.
Niazmand
,
H.
, and
Renksizbulut
,
M.
,
2003
, “
Surface Effects on Transient Three-Dimensional Flows Around Rotating Spheres at Moderate Reynolds Numbers
,”
Comput. Fluids
,
32
, pp.
1405
1433
.
20.
Niazmand
,
H.
, and
Renksizbulut
,
M.
,
2003
, “
Transient Three-Dimensional Heat Transfer From Rotating Spheres With Surface Blowing
,”
Chem. Eng. Sci.
,
58
, pp.
3535
3554
.
21.
Dwyer
,
H. A.
,
1989
, “
Calculations of Droplet Dynamics in High Temperature Environments
,”
Prog. Energy Combust. Sci.
,
15
, pp.
131
158
.
22.
Dennis
,
S. C. R.
, and
Walker
,
J. D. A.
,
1972
, “
Numerical Solutions for Time-Dependent Flow Past an Impulsively Started Sphere
,”
Phys. Fluids
,
15
(
4
), pp.
517
525
.
23.
Renksizbulut
,
M.
, and
Yuen
,
M. C.
,
1983
, “
Experimental Study of Droplet Evaporation in a High-Temperature Air Stream
,”
J. Heat Transfer
,
105
,
384
388
.
You do not currently have access to this content.