In this paper we propose a method to reconstruct the flow at a given time over a region of space using partial instantaneous measurements and full-space proper orthogonal decomposition (POD) statistical information. The procedure is tested for the flow past an open cavity. 3D and 2D POD analysis are used to characterize the physics of the flow. We show that the full 3D flow can be estimated from a 2D section at an instant in time provided that some 3D statistical information—i.e., the largest POD modes of the flow— is made available.

1.
Moin
,
P.
, and
Mahesh
,
K.
, 1998, “
Direct Numerical Simulation: A Tool in Turbulence Research T.R. Bewley and D.S. Henningson
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
539
578
.
2.
Bonnet
,
J. P.
, and
Delville
,
J.
, 2001, “
Review of Coherent Structures in Turbulent Free Shear Flows and Their Possible Influence on Computational Methods
,”
Appl. Sci. Res.
0003-6994,
66
(
4
), pp.
333
353
.
3.
Bonnet
,
J. P.
, and
Delville
,
J.
, 2001, “
Review of Coherent Structures in Turbulent Free Shear Flows and Their Possible Influence on Computational Methods
,”
Flow, Turbul. Combust.
1386-6184,
66
, pp.
333
353
.
4.
Lumley
,
J. L.
, 1967,
The Structure of Inhomogeneous Turbulent Flows in Atmospheric Turbulence and Wave Propagation
,
A. M.
Yaglom
and
V. I.
Tatarski
, eds.,
Nauka
,
Moscow
, pp.
166
178
.
5.
Murray
,
N.
, and
Ukeiley
,
L.
, 2002, “
Estimating the Shear Layer Velocity Field Above an Open Cavity From Surface Pressure Measurements
,” AIAA Paper No. 2002–2866.
6.
Picard
,
C.
, and
Delville
,
J.
, 2000, “
Pressure Velocity Coupling in a Subsonic Round Jet
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
359
364
.
7.
Boree
,
J.
, 2003, “
Extended Proper Orthogonal Decomposition: A Tool to Analyze Correlated Events in Turbulent Flows
,”
Exp. Fluids
0723-4864,
35
(
2
), pp.
188
192
.
8.
Taylor
,
J.
, and
Glauser
,
M.
, 2002, “
Toward Practical Flow Sensing and Control Via POD and lse-based low-dimensional tools
,” ASME 2002 Fluids Engineering Division Summer Meeting, Montreal, Quebec, 14–18 July.
9.
Maurel
,
S.
,
Boree
,
J.
, and
Lumley
,
J. L.
, 2001, “
Extended Proper Orthogonal Decomposition: Application to Jet/Vortex Interaction
,”
Flow, Turbul. Combust.
1386-6184,
67
, pp.
125
136
.
10.
Rempfer
,
D.
, 2000, “
On low-dimensional Galerkin Models for Fluid Flow
,”
Theor. Comput. Fluid Dyn.
0935-4964,
14
, pp.
75
88
.
11.
Lusseyran
,
F.
,
Faure
,
T.
,
Eschenbrenner
,
C.
, and
Fraigneau
,
Y.
, 2004, “
Shear Layer Instability and Frequency Modes Inside an Open Cavity
,”
Proceedings ICTAM 2004
, Varsaw, Poland, 15–21 Aug.
12.
Williams
,
D. R.
,
Rowley
,
C. W.
,
Fabris
,
D.
,
Colonius
,
T.
, and
Murray
,
R. M.
, 2002, “
Model-Based Control of Cavity Oscillations, Part I: Experiments
,” in
Proceedings 40th AIAA Aerospace Meeting
,
AIAA
.
13.
Podvin
,
B.
, 2001, “
Low-Order P.O.D-Based Models for the Flow in a Differentially Heated Cavity
,”
Phys. Fluids
1070-6631,
13
(
11
), pp.
3204
3214
.
14.
Lumley
,
J. L.
, 1967, “
The Structure of Inhomogeneous Turbulent Flows
,” in
Atmospheric Turbulence and Radio Wave Propagation
,
A. M
Iaglom
and
V. I.
Tatarski
, eds.,
Nauka
, Moscow, pp.
221
227
.
15.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
, 1993, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
25
, pp.
539
575
.
16.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
, Cambridge, MA.
17.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures Part I: Coherent Structures
,”
Q. Appl. Math.
0033-569X,
45
(
3
), pp.
561
571
.
18.
Gadouin
,
E.
,
Le Quéré
,
P.
, and
Daube
,
O.
, 2001, “
A General Methodology for Investigating Flow Instability in Complex Geometries: Application to Natural Convection in Enclosures
,”
Int. J. Numer. Methods Fluids
0271-2091,
37
(
2
), pp.
175
208
.
19.
Leonard
,
B. P.
, 1979, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream interpolation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
19
, pp.
59
98
.
20.
Hirsch
,
C.
, 1987,
Numerical Computation of Internal and External Flows
,
Wiley
, New York.
21.
Rockwell
,
D.
, and
Naudascher
,
E.
, 1979, “
Self-Sustained Oscillations of Impinging Free Shear Layers
,”
Annu. Rev. Fluid Mech.
0066-4189,
11
, pp.
67
94
.
22.
Lusseyran
,
F.
,
Rambert
,
A.
,
Gougat
,
P.
,
Fraigneau
,
Y.
,
Elcafsi
,
A.
, and
Quénot
,
G.
, 2002, “
Relationship Between Fourier-Modes and Spatial Structures in a Cavity—Boundary Layer Interaction at Moderate Reynolds Numbers
,” in
Proceedings 11th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics
,
Lisboa.
23.
Rockwell
,
D.
, 1977, “
Prediction of Oscillation Frequencies for Unstable Flow Past Cavities
,”
ASME J. Fluids Eng.
0098-2202,
99
, pp.
294
300
.
You do not currently have access to this content.