The present study concerns the application of large eddy simulation (LES) and implicit LES (ILES) to engineering flow problems. Such applications are often very complicated, involving both complex geometries and complex physics, such as turbulence, chemical reactions, phase changes, and compressibility. The aim of the study is to illustrate what problems occur when attempting to perform such engineering flow calculations using LES and ILES, and put these in relation to the issues originally motivating the calculations. The issues of subgrid modeling are discussed with particular emphasis on the complex physics that needs to be incorporated into the LES models. Results from representative calculations, involving incompressible flows around complex geometries, aerodynamic noise, compressible flows, combustion, and cavitation, are presented, discussed, and compared with experimental data whenever possible.

1.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, England
.
2.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Mathematical Models of Turbulence
,
Academic
,
New York
.
3.
Wilcox
,
D. C.
, 1993,
Turbulence Modeling for CFD
,
DCW Industries
,
La Cañada, CA
.
4.
Ferziger
,
J. H.
, and
Leslie
,
D. C.
, 1979, “
Large Eddy Simulation—A Predictive Approach to Turbulent Flow Computation
,” AIAA Paper No. 79-1441.
5.
Boris
,
J. P.
,
Grinstein
,
F. F.
,
Oran
,
E. S.
, and
Kolbe
,
R. L.
, 1992, “
New Insights Into Large Eddy Simulation
,”
Fluid Dyn. Res.
0169-5983,
10
, pp.
199
228
.
6.
Sagaut
,
P.
, 2001,
Large Eddy Simulation for Incompressible Flows
,
Springer
,
New York
.
7.
Boris
,
J. P.
, 1992, “
On Large Eddy Simulations Using Subgrid Turbulence Models
,” in
Wither Turbulence? Turbulence at the Crossroads
,
J. L.
Lumly
, ed.,
Lecture Notes in Physics
, Vol.
357
,
Springer-Verlag
,
Berlin
, p.
344
.
8.
Bagget
,
J. S.
, 1998, “
On the Feasibility of Merging LES With RANS for the Near Wall Region of Attached Turbulent Flows
,” Annual Research Briefs, Center of Turbulence Research, p.
51
.
9.
Fureby
,
C.
, 2007, “
On LES and DES of Wall Bounded Flows
,”
Ercoftac Bulletin
, No. 17.
10.
Fureby
,
C.
,
Alin
,
N.
,
Wikström
,
N.
,
Menon
,
S.
,
Persson
,
L.
, and
Svanstedt
,
N.
, 2004, “
Large Eddy Simulations of High Re-Number Wall Bounded Flows
,”
AIAA J.
0001-1452,
42
, pp.
457
468
.
11.
Nikitin
,
N. V.
,
Nicoud
,
F.
,
Wasistho
,
B.
,
Squires
,
K. D.
, and
Spalart
,
P. R.
, 2000, “
An Approach to Wall Modelling in Large Eddy Simulation
,”
Phys. Fluids
1070-6631,
12
, pp.
1629
1632
.
12.
Grinstein
,
F. F.
, and
Fureby
,
C.
, 2004, “
From Homogeneous Turbulent Flows to Pollutant Dispersion in Urban Areas: Recent Progress in Monotonically Integrated LES
,”
Comput. Sci. Eng.
1521-9615,
6
(
2
), pp.
36
49
.
13.
Grinstein
,
F. F.
,
Margolin
,
L.
, and
Rider
,
B.
, 2007,
Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics
,
Cambridge University Press
, in press.
14.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, 1999, “
Direct Numerical Simulation of Turbulent Channel Flow up to Re=590
,”
Phys. Fluids
1070-6631,
11
, pp.
943
946
.
15.
Wei
,
T.
, and
Willmarth
,
W. W.
, 1989, “
Reynolds Number Effects on the Structure of a Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
204
, pp.
57
95
.
16.
Lourenco
,
L. M.
, and
Shih
,
C.
, 1993, “
Characteristics of the Plane Turbulent Near Wake of a Circular Cylinder, A Particle Image Velocimetry Study
.” Data taken from
Ma
,
X.
,
Karamanos
,
G. S.
, and
Karniadakis
,
G. E.
, 2000, “
Dynamics and Low-Dimensionality of a Turbulent Near Wake
,”
J. Fluid Mech.
0022-1120,
410
, pp.
29
65
.
17.
Ong
,
J.
, and
Wallace
,
L.
, 1996, “
The Velocity Field of the Turbulent Very Near Wake of a Circular Cylinder
,”
Exp. Fluids
0723-4864,
20
, pp.
441
453
.
18.
Cantwell
,
B.
, and
Coles
,
D.
, 1983, “
An Experimental Study of Entrainment and Transport in the Turbulent Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
136
, pp.
321
374
.
19.
Persson
,
T.
,
Fureby
,
C.
, and
Bensow
,
R.
, 2005, “
Large Eddy Simulation and Deatched Eddy Simulation of Turbulent Flow Around a Circular Cylinder
,” Chalmers Report No. 05:98.
20.
Byun
,
G.
, and
Simpson
,
R. L.
, 2005, “
Structure of Three-dimensional Separated Flow on a Axisymmetric Bump
,” AIAA Report No. 05-0113.
21.
Persson
,
T. M.
,
Liefevendahl
,
M.
,
Bensow
,
R.
, and
Fureby
,
C.
, 2005, “
Numerical Investigation of the Flow Over an Axisymmetric Hill Using LES, DES and RANS
,”
J. Turbul.
1468-5248,
7
, pp.
1
17
.
22.
Oran
,
S. S.
, and
Boris
,
J. P.
, 2000,
Numerical Simulation of Reactive Flow
,
Cambridge University Press
,
Cambridge, England
.
23.
Chomiak
,
J.
, and
Nisbeth
,
J.
, 1995, “
Modeling Variable Density Effects in Turbulent Flames—Some Basic Considerations
,”
Combust. Flame
0010-2180,
102
, pp.
371
386
.
24.
Groves
,
N. C.
,
Huang
,
T. T.
, and
Chang
,
M. S.
, 1989, “
Geometric Characteristics of DARPA SUBOFF Models
,” Report No. DTRC∕SHD-1298-01.
25.
Huang
,
T. T.
,
Liu
,
H.-L.
,
Groves
,
N. C.
,
Forlini
,
T. J.
,
Blanton
,
J.
, and
Gowing
,
S.
, 1992, “
Measurements of Flows Over an Axisymmetric Body With Various Appendages (DARPA SUBOFF Experiments)
,”
Proceedings of the 19th Symposium on Naval Hydrodynamics
,
Seoul, Korea
.
26.
Persson
,
T.
,
Bensow
,
R.
,
Fureby
,
C.
,
Alin
,
N.
, and
Svennberg
,
U.
, 2004, “
Large Eddy Simulation of the Viscous Flow Around Submarine Hulls
,”
Proceedings of the 25th Symposium on Naval Hydrodynamics
,
St. John’s, Canada
, p.
261
.
27.
Grinstein
,
F. F.
, and
Fureby
,
C.
, 2002, “
Recent Progress on MILES for High Re Flows
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
848
861
.
28.
Schumann
,
U.
, 1975, “
Subgrid Scale Model for Finite Difference Simulation of Turbulent Flows in Plane Channels and Annuli
,”
J. Comput. Phys.
0021-9991,
18
, pp.
376
404
.
29.
Goldstein
,
R. J.
, 1996,
Fluid Mechanics Measurements
,
Taylor & Francis
,
Washington, D.C.
30.
Li
,
D. Q.
, 1994, “
Investigation of Propeller Rudder Interaction by Numerical Methods
,” Ph.D. thesis, Chalmers University of Technology, Sweden.
31.
Hardin
,
J. C.
, and
Pope
,
D. S.
, 1994, “
An Acoustic∕Viscous Splitting Technique for Computational Aeroacoustics
,”
Theor. Comput. Fluid Dyn.
0935-4964,
6
, pp.
323
340
.
32.
Lighthill
,
M. J.
, 1952, “
On Sound Generated Aerodynamically: I General Theory
,”
Proc. R. Soc. London, Ser. A
1364-5021,
211
, pp.
564
587
.
33.
Ffowkcs-Williams
,
J. E.
, and
Hawkings
,
D. L.
, 1969, “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
264
(
1151
), pp.
321
342
.
34.
Lyrintzis
,
A. S.
, 1994, “
Review: The Use of Kirchhoff’s Method in Computational Aeroacoustics
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
665
676
.
35.
Höld
,
R.
,
Brenneis
,
A.
,
Eberle
,
A.
,
Schwarz
,
V.
, and
Siegert
,
R.
, 1999, “
Numerical Simulation of Aeroacoustic Sound Generated by Generic Bodies Placed on a Plate: Part 1—Prediction of Aerodynamic Sources
,” AIAA Paper No. 99-1896.
36.
Siegert
,
R.
,
Schwarz
,
V.
, and
Reichenberger
,
J.
, 1999, “
Numerical Simulation of Aeroacoustic Sound Generated by Generic Bodies Placed on a Plate: Part 1—Prediction of Radiated Sound Pressure
,” AIAA Paper No. 99-1895.
37.
Delery
,
J.
, and
Lacau
,
R. G.
, 1987, “
Prediction of Base Flows
,” AGARD Report No. 654.
38.
Putnam
,
L. E.
, and
Bissinger
,
N. C.
, 1985, “
Results of AGARD Assessment of Prediction Capabilities for Nozzle Afterbody Flows
,” AIAA Paper No. 85-1464.
39.
Sahu
,
J.
, 1994, “
Numerical Computations of Supersonic Base Flow With Special Emphasis on Turbulence Modelling
,”
AIAA J.
0001-1452,
32
, pp.
1547
1549
.
40.
Fureby
,
C.
,
Nilsson
,
Y.
, and
Andersson
,
K.
, 1999, “
Large Eddy Simulation of Supersonic Base Flow
,” AIAA Paper No. 99-0537.
41.
Forsythe
,
J. R.
,
Hoffmann
,
K. A.
, and
Squires
,
K. D.
, 2002, “
Detatched-Eddy Simulation with Compressibility Corrections Applied to a Supersonic Axisymmetric Base Flow
,” AIAA Paper No. 02-0586.
42.
Simon
,
F.
,
Deck
,
P.
,
Guillen
,
P.
, and
Cayzac
,
R.
, 2006, “
Numerical Simulations of Projectile Baseflow
,” AIAA Paper No. 06-1116.
43.
Herrin
,
J. L.
, and
Dutton
,
C. J.
, 1994, “
Supersonic Base Flow Experiments in the Near Wake of A Cylindrical Afterbody
,”
AIAA J.
0001-1452,
32
, pp.
77
83
.
44.
Mathur
,
T.
, and
Dutton
,
J. C.
, 1996, “
Base-Bleed Experiments With a Cylindrical Afterbody in Supersonic Flow
,”
J. Spacecr. Rockets
0022-4650,
33
, pp.
30
37
.
45.
Bardina
,
J.
,
Ferziger
,
J. H.
, and
Reynolds
,
W. C.
, 1980, “
Improved Subgrid Scale Models for Large Eddy Simulations
,” AIAA Paper No. 80-1357.
46.
van Leer
,
B.
, 1979, “
Towards the Ultimate Conservative Differencing Scheme V: A Second Order Sequel to Gudonovs Method
,”
J. Comput. Phys.
0021-9991,
32
, pp.
101
136
.
47.
Boris
,
J. P.
, and
Book
,
D. L.
, 1973, “
Flux-Corrected Transport I. SHASTA, A Fluid Transport Algorithm That Works
,”
J. Comput. Phys.
0021-9991,
11
, pp.
38
69
.
48.
Gottlieb
,
S.
, and
Shu
,
C.-W.
, 1998, “
Total Variational Diminishing Runge-Kutta Schemes
,”
Math. Comput.
0025-5718,
67
, pp.
73
85
.
49.
Kohse-Höinghaus
,
K.
,
Barlow
,
R. S.
,
Aldén
,
M.
, and
Wolfrum
,
J.
, 2005, “
Combustion at the Focus: Laser Diagnostics and Control
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
89
123
.
50.
Vervish
,
L.
,
Domingo
,
P.
, and
Hauguel
,
R.
, 2003, “
Turbulent Combustion in the Light of Direct and Large Eddy Simulation
,”
Turbulent Shear Flow Phenomena
,
Sendai, Japan
, Vol.
3
.
51.
Mantel
,
T.
,
Egolfopoulos
,
F.
, and
Bowman
,
C. T.
, 1996, “
A New Methodology to Determine Kinetic Parameters for One- and Two-Step Chemical Models
,” Stanford CTR Summer Program.
52.
Libby
,
P. A.
, and
Williams
,
F. A.
, 1980, “
Fundamental Aspects
,” in
Turbulent Reactive Flows
,
P. A.
Libby
and
F. A.
Williams
, eds.,
Springer-Verlag
,
Berlin
, p.
1
.
53.
Poinsot
,
T.
, and
Veynante
,
D.
, 2001,
Theoretical and Numerical Combustion
,
Edwards
,
Ann Arbor
.
54.
Westbrook
,
C.
, and
Dryer
,
F.
, 1981, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
0010-2202,
27
, pp.
31
43
.
55.
Fureby
,
C.
, 2006, “
A Comparison of Flamelet Models for Premixed Turbulent Combustion
,” AIAA Paper No. 06-0155.
56.
Sjunneson
,
A.
,
Olovsson
,
S.
, and
Sjöblom
,
B.
, 1991, “
Validation Rig—A Tool for Flame Studies
,” Presented at the ISABE conference,
Nottingham, UK
.
57.
Sjunnesson
,
A.
,
Henriksson
,
P.
, and
Löfström
,
C.
, 1992, “
CARS Measurements and Visualization of Reacting Flows in a Bluff Body Stabilized Flame
,” AIAA Paper No. 92-3650.
58.
Fureby
,
C.
, 2000, “
Large Eddy Simulation of Combustion Instabilities in a Jet-Engine Afterburner Model
,”
Combust. Sci. Technol.
0010-2202,
161
, pp.
213
243
.
59.
Sanquer
,
S.
,
Bruel
,
P.
, and
Deshaies
,
B.
, 1998, “
Some Specific Characteristics of Turbulence in the Reactive Wakes of Bluff Bodies
,”
AIAA J.
0001-1452,
36
, pp.
994
1001
.
60.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
, 1997, “
A Tensorial Approach to CFD Using Object Oriented Techniques
,”
Comput. Phys.
0894-1866,
12
, pp.
620
631
(see also www.http.OpenFoam.com).
You do not currently have access to this content.