This paper reports an experimental study of the combined effects of rib roughness and pressure gradient on turbulent flows produced in asymmetric converging and diverging channels. Transverse square ribs with pitch-to-height ratio of 4 were attached to the bottom wall of the channel to produce the rib roughness. A particle image velocimetry technique was used to conduct measurements at several streamwise-transverse planes located upstream, within, and downstream of the converging and diverging sections of the channel. From these measurements, the mean velocities and turbulent statistics at the top plane of the ribs and across the channel were obtained. The data revealed non-negligible wall-normal motion and interaction between the cavities and overlying boundary layers. The different drag characteristics of the rough bottom wall and the smooth top wall produced asymmetric distributions of mean velocity and turbulent statistics across the channel. The asymmetry of these profiles is most extreme in the presence of adverse pressure gradient. Because of the manner in which pressure gradient modifies the mean flow and turbulence production, it was found that the streamwise turbulence intensity and Reynolds shear stress in the vicinity of the ribs are lower in the adverse pressure gradient than in the favorable pressure gradient channel. The results show also that the combined effects of rib roughness and adverse pressure gradient on the turbulent intensity statistics are significantly higher than when roughness and adverse pressure gradient are applied in isolation.

1.
Blackwelder
,
R. F.
, and
Kovasznay
,
L. S. G.
, 1972, “
Large-Scale Motion of a Turbulent Boundary Layer During Relaminarization
,”
J. Fluid Mech.
0022-1120,
53
, pp.
61
83
.
2.
Narasimha
,
R.
, and
Sreenivasan
,
K. R.
, 1973, “
Relaminarization in Highly Accelerated Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
61
, pp.
417
447
.
3.
Ichimiya
,
M.
,
Makamura
,
I.
, and
Yamashita
,
S.
, 1998, “
Properties of a Relaminarizing Turbulent Boundary Layer Under a Favorable Pressure Gradient
,”
Exp. Therm. Fluid Sci.
0894-1777,
17
, pp.
37
48
.
4.
Aubertine
,
C. D.
, and
Eaton
,
J. K.
, 2005, “
Turbulence Development in a Non-Equilibrium Turbulent Boundary Layer With Mild Adverse Pressure Gradient
,”
J. Fluid Mech.
0022-1120,
532
, pp.
345
364
.
5.
Skåre
,
P. E.
, and
Krogstad
,
P.-Å.
, 1994, “
A Turbulent Equilibrium Boundary Layer Near Separation
,”
J. Fluid Mech.
0022-1120,
272
, pp.
319
348
.
6.
Dengel
,
P.
, and
Fernholz
,
H. H.
, 1990, “
An Experimental Investigation of an Incompressible Turbulent Boundary Layer in the Vicinity of Separation
,”
J. Fluid Mech.
0022-1120,
212
, pp.
615
636
.
7.
Angele
,
K. P.
, and
Muhammad-Klingmann
,
B.
, 2006, “
PIV Measurements in a Weakly Separating and Reattaching Turbulent Boundary Layer
,”
Eur. J. Mech. B/Fluids
0997-7546,
25
, pp.
204
222
.
8.
Cui
,
J.
,
Patel
,
V. C.
, and
Lin
,
C.-L.
, 2003, “
Large-Eddy Simulation of Turbulent Flow in a Channel With Rib Roughness
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
372
388
.
9.
Nagano
,
Y.
,
Hattori
,
H.
,
Yasui
,
S.
, and
Houra
,
T.
, 2004, “
DNS of Velocity and Thermal Fields in Turbulent Channel Flow With Transverse-Rib Roughness
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
393
403
.
10.
Ikeda
,
T.
, and
Durbin
,
P. A.
, 2007, “
Direct Simulation of a Rough-Wall Channel Flow
,”
J. Fluid Mech.
0022-1120,
571
, pp.
235
263
.
11.
Lee
,
S.-H.
, and
Sung
,
H. J.
, 2007, “
Direct Numerical Simulation of the Turbulent Boundary Layer Over a Rod-Roughened Wall
,”
J. Fluid Mech.
0022-1120,
584
, pp.
125
146
.
12.
Ashrafian
,
A.
,
Andersson
,
H. I.
, and
Manhart
,
M.
, 2004, “
DNS of Turbulent Flow in a Rod-Roughened Channel
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
373
383
.
13.
Leonardi
,
S.
,
Orlandi
,
P.
,
Smalley
,
R. J.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
, 2003, “
Direct Numerical Simulations of Turbulent Channel With Transverse Square Bars on One Wall
,”
J. Fluid Mech.
0022-1120,
491
, pp.
229
238
.
14.
Tani
,
I.
, 1987, “
Equilibrium, or Non-Equilibrium, of Turbulent Boundary Layer Flows
,”
Proc. Jpn. Acad., Ser. B: Phys. Biol. Sci.
0386-2208,
63
, pp.
96
100
.
15.
Kameda
,
T.
,
Mochizuki
,
S.
, and
Osaka
,
H.
, 2004, “
LDA Measurement in Roughness Sublayer Beneath Turbulent Boundary Layer Developed Over Two-dimensional Square Rough Surface
,”
12th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, July 12–15.
16.
Bakken
,
O. M.
,
Krogstad
,
P.-Å
,
Ashrafian
,
A.
, and
Andersson
,
H. I.
, 2005, “
Reynolds Number Effects in the Outer Layer of the Turbulent Flow in a Channel With Rough Walls
,”
Phys. Fluids
1070-6631,
17
, pp.
065101
.
17.
Agelinchaab
,
M.
, and
Tachie
,
M. F.
, 2006, “
Open Channel Turbulent Flow Over Hemispherical Ribs
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
1010
1027
.
18.
Tachie
,
M. F.
, and
Adane
,
K. K.
, 2007, “
PIV Study of Shallow Open Channel Flow Over d- and k-Type Transverse Ribs
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
1058
1072
.
19.
Perry
,
A. E.
,
Schofield
,
W. H.
, and
Joubert
,
P. N.
, 1969, “
Rough Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
37
, pp.
383
413
.
20.
Tachie
,
M. F.
,
Agelinchaab
,
M.
, and
Shah
,
M. K.
, 2007, “
Turbulent Flow Over Transverse Ribs in Open Channel With Converging Side Walls
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
683
707
.
21.
Tachie
,
M. F.
, 2007, “
PIV Study of Turbulent Flow Over Transverse Square Ribs in Asymmetric Diffuser
,”
Phys. Fluids
1070-6631,
19
, pp.
065106
.
22.
Raupach
,
M. R.
,
Antonia
,
R. A.
, and
Rajagopalan
,
S.
, 1991, “
Rough-Wall Turbulent Boundary Layers
Appl. Mech. Rev.
0003-6900,
44
(
1
), pp.
1
25
.
23.
Castro
,
I. P.
, 2007, “
Rough-Wall Boundary Layers: Mean Flow Universality
,”
J. Fluid Mech.
0022-1120,
585
, pp.
469
485
.
24.
Shah
,
M. K.
, and
Tachie
,
M. F.
, 2008, “
PIV Study of Turbulent Flow in Asymmetric Converging and Diverging Channels
,”
ASME J. Fluids Eng.
0098-2202,
130
, p.
011204
.
25.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhaus
,
J.
, 1998,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
New York
.
26.
Shah
,
M. K.
,
Agelinchaab
,
M.
, and
Tachie
,
M. F.
, 2008, “
Influence of PIV Interrogation Area on Turbulent Statistics Up to 4th Order Moments in Smooth and Rough Wall Turbulent Flows
,”
Exp. Therm. Fluid Sci.
0894-1777,
32
, pp.
725
747
.
27.
Prasad
,
A. K.
,
Adrian
,
R. J.
,
Landreth
,
C. C.
, and
Offutt
,
P. W.
, 1992, “
Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation
,”
Exp. Fluids
0723-4864,
13
, pp.
105
116
.
28.
Forliti
,
D. J.
,
Strykowski
,
P. J.
, and
Debatin
,
K.
, 2000, “
Bias and Precision Errors of Digital Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
28
, pp.
436
447
.
29.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1995, “
Engineering Application of Experimental Uncertainty Analysis
,”
AIAA J.
0001-1452,
33
, pp.
1888
1896
.
30.
Krogstad
,
P.-Å.
,
Andersson
,
H. I.
,
Bakken
,
O. M.
,
Ashrafian
,
A.
, 2005, “
An Experimental and Numerical Study of Channel Flow With Rough Walls
,”
J. Fluid Mech.
0022-1120,
530
, pp.
327
352
.
31.
Kader
,
B. A.
, and
Yaglom
,
A. M.
, 1978, “
Similarity Treatment of Moving-Equilibrium Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Fluid Mech.
0022-1120,
89
, pp.
305
342
.
32.
Ligrani
,
P. M.
, and
Moffat
,
R. J.
, 1986, “
Structure of Transitionally Rough and Fully Rough Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
162
, pp.
69
98
.
33.
Schlichting
,
H.
, 1979, “
Boundary-Layer Theory
,”
McGraw-Hill
,
New York
.
34.
Buschmann
,
M. H.
, and
Gad-el-Hak
,
M.
, 2003, “
Debate concerning the Mean-Velocity Profile of a Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
41
(
4
), pp.
565
572
.
35.
George
,
W. K.
, and
Castillo
,
L.
, 1997, “
Zero Pressure Gradient Turbulent Boundary Layer
,”
Appl. Mech. Rev.
0003-6900,
50
(
11
), pp.
689
729
.
36.
Bergstrom
,
D. J.
,
Tachie
,
M. F.
, and
Balachandar
,
R.
, 2001, “
Application of Power Laws to Low Reynolds Number Boundary Layers on Smooth and Rough Surfaces
,”
Phys. Fluids
1070-6631,
13
, pp.
3277
3284
.
37.
Kotey
,
N. A.
,
Bergstrom
,
D. J.
, and
Tachie
,
M. F.
, 2003, “
Power Laws for Rough Wall Turbulent Boundary Layers
,”
Phys. Fluids
1070-6631,
15
(
6
), pp.
1396
1404
.
38.
Zagarola
,
M. V.
, and
Smits
,
A. J.
, 1998, “
Mean-Flow Scaling of Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
373
, pp.
33
79
.
You do not currently have access to this content.