Research on wave propagation in liquid filled vessels is often motivated by the need to understand arterial blood flows. Theoretical and experimental investigation of the propagation of waves in flexible tubes has been studied by many researchers. The analytical one-dimensional frequency domain wave theory has a great advantage of providing accurate results without the additional computational cost related to the modern time domain simulation models. For assessing the validity of analytical and numerical models, well defined in vitro experiments are of great importance. The objective of this paper is to present a frequency domain analytical model based on the one-dimensional wave propagation theory and validate it against experimental data obtained for aortic analogs. The elastic and viscoelastic properties of the wall are included in the analytical model. The pressure, volumetric flow rate, and wall distention obtained from the analytical model are compared with experimental data in two straight tubes with aortic relevance. The analytical results and the experimental measurements were found to be in good agreement when the viscoelastic properties of the wall are taken into account.

1.
Lighthill
,
J.
, 1978,
Waves in Fluids
,
Cambridge University Press
,
Cambridge, UK
.
2.
Fung
,
Y. C.
, 1984,
Biodynamics: Circulation
,
Springer
,
New York
.
3.
Fung
,
Y. C.
, 1997,
Biomechanics: Circulation
,
Springer
,
New York
.
4.
Womersley
,
J. R.
, 1957, “
An Elastic Tube Theory of Pulse Transmission and Oscillatory Flow in Mammalian Arteries
,” Technical Report No. WADC-TR-56-614, Wright Air Development Center, Dayton, OH.
5.
Young
,
T.
, 1808, “
Hydraulic Investigations, Subservient to an Intended Croonian Lecture of the Motion of Blood
,”
Philos. Trans. R. Soc. London
0962-8428,
98
, pp.
164
186
.
6.
Tijsseling
,
A. S.
, and
Anderson
,
A.
, 2008, “
Thomas Young’s Research on Fluid Transients: 200 Years on
,”
Proceedings of the BHR Group 2008 on Pressure Surges
, pp.
21
33
.
7.
Cox
,
R.
, 1968, “
Wave Propagation Through a Newtonian Fluid Contained Within a Thick-Walled Viscoelastic Tube
,”
Biophys. J.
0006-3495,
8
, pp.
691
709
.
8.
Lighthill
,
M. J.
, 1972, “
Physiological Fluid Dynamics: A Survey
,”
J. Fluid Mech.
0022-1120,
52
, pp.
475
497
.
9.
Giannopapa
,
C. G.
, 2007, “
Indicative Results and Progress on the Development of the Unified Single Solutions Method for Fluid-Structure Interaction Problems
,”
Proceedings 2007 ASME Pressure Vessels and Piping Division Conference
, San Antonio, Texas, July 22–26, pp.
PVP
2007-
026420
.
10.
Heil
,
M.
, 1998, “
Stokes Flow in an Elastic Tube—A Large Displacement Fluid-Structure Interaction Problem
,”
Int. J. Numer. Methods Fluids
0271-2091,
28
, pp.
243
265
.
11.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
28
(
7
), pp.
845
856
.
12.
Taylor
,
C. A.
,
Hughes
,
T. R.
, and
Zarins
,
C. K.
, 1998, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
158
, pp.
155
196
.
13.
Wan
,
J.
,
Steele
,
B.
,
Spicer
,
S. A.
,
Strohband
,
S.
,
Feeijoo
,
C. R.
, and
Hughes
,
T. R.
, 2002, “
A One-Dimensional Finite Element Method for Simulation Based Medical Planning for Cardiovascular Disease
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
5
(
3
), pp.
195
206
.
14.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
3776
3796
.
15.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
, 2004, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
0021-9290,
37
, pp.
709
720
.
16.
Bessems
,
D.
,
Giannopapa
,
C.
,
Rutten
,
M. C. M
, and
van der Vosse
,
F. N.
, 2007, “
Experimental Validation of a Time-Domain-Based Wave Propagation Model of Blood Flow in Viscoelastic Vessels
.”
17.
Tijsseling
,
A. S.
, 1996, “
Fluid-Structure Interaction in Liquid Filled Pipe Systems: A Review
,”
J. Fluids Struct.
0889-9746,
10
, pp.
109
146
.
18.
von Kries
,
J.
, 1892,
Studien zur Pulslehre. Akademische Verlagsbuchhandlung von JCB Mohr
,
Paul Siebeck
,
Freiburg, Germany
.
19.
Klip
,
W.
, 1962,
Velocity and Damping of Pulse Waves
,
Martinus Nijhoff
,
The Hague, The Netherlands
.
20.
Gerrard
,
J. H.
, 1985, “
An Experimental Test of the Theory of Waves in Fluid-Filled Deformable Tubes
,”
J. Fluid Mech.
0022-1120,
156
, pp.
321
347
.
21.
Giannopapa
,
C. G.
, 2004, “
Fluid-Structure Interaction in Flexible Vessels
,” Ph.D. thesis, University of London, UK.
22.
Westerhof
,
N.
,
Bosman
,
F.
,
Vries
,
C. J. D.
, and
Noordergraaf
,
A.
, 1969, “
Analogue Studies of the Human Systematic Arterial Tree
,”
J. Biomech.
0021-9290,
2
, pp.
121
143
.
23.
Korteweg
,
D. J.
, 1878, “
Uber die Fortpflanzungs geschwindigkeit des Schalles in elastischen Rohren
,”
Ann. Phys. Chem.
0003-3804,
241
, pp.
525
542
.
24.
Pedley
,
T. J.
, 1980,
The Fluid Mechanics of Large Blood Vessels
,
Cambridge University Press
,
Cambridge, England
.
25.
Sarpkaya
,
T.
, 2005, “
On the Parameter β=Re/KC=D2/vT
,”
J. Fluids Struct.
0889-9746,
21
, pp.
435
440
.
26.
Brands
,
P. J.
,
Hoeks
,
A. P. G.
,
Willigers
,
J.
, and
Willekes
,
C.
, 1999, “
An Integrated System for the Non-Invasive Assessment of Vessel Wall and Homodynamic Properties of Large Arteries by Means of Ultrasound
,”
Eur. J. Ultrasound
0929-8266,
9
, pp.
257
266
.
You do not currently have access to this content.