Large eddy simulation (LES) is employed in this paper to model the axial flow along a circular array of rods with a focus on anisotropic large-scale turbulence. The circular array consists of four whole rods and eight half rods, with a pitch-to-diameter ratio of 1.08. A dynamic Smagorinsky model with SIMPLE coupling method and a bounded central difference scheme are used to reduce numerical errors. The high demands for computations of the three-dimensional turbulent flows are afforded through parallel processing and utilization of 20 processors. The numerical results obtained using LES are compared with independent experimental data available in the literature; good agreement is achieved. The LES model was developed to accurately predict (i) the dependence of turbulence intensity and dominant frequency on the gap size and (ii) the turbulence structure in different directions.

1.
Paidoussis
,
M. P.
, 2006, “
Real-Life Experience With Flow-Induced Vibration
,”
J. Fluids Struct.
0889-9746,
22
, pp.
741
755
.
2.
Norsworthy
,
A. G.
,
Field
,
G. J.
,
Meysner
,
A.
,
Dalton
,
K.
, and
Crandell
,
A.
, 1994, “
Fuel Bundle to Pressure Tube Fretting in Bruce and Darlington Reactors
,”
Proceedings of the 15th Canadian Nuclear Society Annual Conference
,
Montreal, Canada
, Jun. 5–8.
3.
Curling
,
L. R.
, and
Paidoussis
,
M. P.
, 1992, “
Measurements and Characterization of Wall-Pressure Fluctuations on Cylinders in a Bundle in Turbulent Axial Flow; Part 1: Spectral Characteristics
,”
J. Sound Vib.
0022-460X,
157
(
3
), pp.
405
433
.
4.
Curling
,
L. R.
, and
Paidoussis
,
M. P.
, 1992, “
Measurements and Characterization of Wall-Pressure Fluctuations on Cylinders in a Bundle in Turbulent Axial Flow; Part 2: Temporal Characteristics
,”
J. Sound Vib.
0022-460X,
157
(
3
), pp.
435
449
.
5.
Rowe
,
D. S.
,
Johnson
,
B. M.
, and
Kundsen
,
J. G.
, 1974, “
Implications Concerning Rod Bundle Cross Flow Mixing Based on Measurements of Turbulent Flow Structure
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
407
419
.
6.
Moller
,
S. V.
, 1991, “
On Phenomena of Turbulent Flow Through Rod Bundles
,”
Exp. Therm. Fluid Sci.
0894-1777,
4
, pp.
25
35
.
7.
Rehme
,
K.
, 1992, “
The Structure of Turbulence in Rod Bundles and the Implications on Natural Mixing Between the Subchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
2
), pp.
567
581
.
8.
Hooper
,
J. D.
, and
Wood
,
D. H.
, 1984, “
Fully Developed Rod Bundle Flow Over a Large Range of Reynolds Number
,”
Nucl. Eng. Des.
0029-5493,
83
, pp.
31
46
.
9.
Vonka
,
V.
, 1988, “
Measurements of Secondary Flow Vortices in a Rod Bundle
,”
Nucl. Eng. Des.
0029-5493,
106
, pp.
191
207
.
10.
Lee
,
K. B.
, and
Jang
,
H. C.
, 1997, “
A Numerical Prediction on the Turbulent Flow in Closely Spaced Bare Rod Arrays by a Nonlinear κ-ε Model
,”
Nucl. Eng. Des.
0029-5493,
172
, pp.
351
357
.
11.
In
,
W. K.
,
Shin
,
C. H.
,
Oh
,
D. S.
, and
Chun
,
T. H.
, 2004, “
CFD Simulation of the Turbulent Flow and Heat Transfer in a Bare Rod Bundle
,”
Proceedings of the ICAPP ‘04
,
Pittsburgh, PA
, Jun. 13–17, Paper No. 4179, pp.
1544
1551
.
12.
Ikeno
,
T.
,
Kajishima
,
T.
, and
Murata
,
T.
, 2006, “
The Effect of Mixing-Vane Arrangements in a Subchannel Turbulent Flow
,”
J. Nucl. Sci. Technol.
0022-3131,
43
(
10
), pp.
1194
1205
.
13.
Kim
,
H. M.
, and
No
,
H. C.
, 2004, “
Analysis of Power Spectrum Density in the PWR Fuel Assembly Using the 3-D LES Turbulent Model of FLUENT 6
,”
Proceedings of the 12th ASME International Conference on Nuclear Engineering (ICONE12)
,
Arlington, VA
, Apr. 25–29, 2004, pp.
295
303
.
14.
Smagorinsky
,
J. S.
, 1963, “
General Circulation Experiments With the Primitive Equations, Part I: The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
99
152
.
15.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
(
7
), pp.
1760
1765
.
16.
Leonard
,
B. P.
, 1991, “
The ULTIMATE Conservative Difference Scheme Applied to Unsteady One-Dimensional Advection
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
88
, pp.
17
74
.
17.
Abbasian
,
F.
,
Cao
,
J.
, and
Yu
,
S. D.
, 2008, “
Numerical and Experimental Studies of Oscillatory Airflows Induced by Rotation of a Grass-Cutting Blade
,”
ASME J. Fluids Eng.
0098-2202,
130
(
3
), p.
031104
.
18.
Kraichnan
,
R. H.
, 1956, “
Pressure Fluctuations in Turbulent Flow Over a Flat Plate
,”
J. Acoust. Soc. Am.
0001-4966,
28
(
3
), pp.
378
390
.
19.
Farabee
,
T. M.
, and
Casarella
,
M. J.
, 1991, “
Spectral Features of Wall Pressure Fluctuations Beneath Turbulent Boundary Layers
,”
Phys. Fluids A
0899-8213,
3
(
10
), pp.
2410
2420
.
20.
Addad
,
Y.
,
Laurence
,
D.
,
Talotte
,
C.
, and
Jacob
,
M. C.
, 2003, “
Large Eddy Simulation of a Forward-Backward Facing Step for Acoustic Source Identification
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
562
571
.
21.
Abbasian
,
F.
,
Cao
,
J.
, and
Yu
,
S. D.
, 2008, “
Measurements of Turbulent Pressures of Flow in a Water-Conveying Pipe Containing a Simulation Fuel Bundle
,”
Proceedings of the 2008 Canadian Nuclear Society Annual Conference
,
Toronto, Canada
.
22.
Clinch
,
J. M.
, 1969, “
Measurements of the Wall Pressure Field at the Surface of a Smooth-Walled Pipe Containing Turbulent Water Flow
,”
J. Sound Vib.
0022-460X,
9
, pp.
398
419
.
23.
Mulcahy
,
T. M.
,
Wambsganss
,
M. W.
,
Lin
,
W. H.
,
Yeh
,
T. T.
, and
Lawrence
,
W. P.
, 1981, “
Measurements of Wall Pressure Fluctuations on a Cylinder in Annular Water Flow With Upstream Disturbances, Part I: No Flow Spoilers
,”
General Electric Co., Nuclear Engineering Division
, San Jose, CA, Report No. GEAP-24310.
You do not currently have access to this content.