A viscous shear flow moves parallel to a wavy plate. Partial slip occurs on the wavy surface. The problem is solved by perturbation about a small amplitude parameter, namely, the amplitude to wavelength ratio. It is found that the interaction of waviness and slip decreases the apparent slip coefficient.
Issue Section:
Technical Briefs
Keywords:
external flows,
microchannel flow,
Navier-Stokes equations,
shear flow,
slip flow,
viscosity,
viscous flow,
slip,
wavy,
shear
1.
Sharipov
, F.
, and Seleznev
, V.
, 1998, “Data on Internal Rarefied Gas Flows
,” J. Phys. Chem. Ref. Data
0047-2689, 27
, pp. 657
–706
.2.
Tretheway
, D. C.
, and Meinhart
, C. D.
, 2002, “Apparent Fluid Slip at Hydrophobic Microchannel Walls
,” Phys. Fluids
1070-6631, 14
, pp. L9
–L12
.3.
Navier
, C. L. M.
, 1827, “Sur les lois du mouvement des fluids
,” C. R. Acad. Sci. France
, 6
, pp. 389
–440
.4.
Kennard
, E. H.
, 1938, Kinetic Theory of Gasses
, McGraw-Hill
, New York
.5.
White
, F. M.
, 2006, Viscous Fluid Flow
, 3rd ed., McGraw-Hill
, New York
.6.
Ebert
, W. A.
, and Sparrow
, E. M.
, 1965, “Slip Flow in Rectangular and Annular Ducts
,” ASME J. Basic Eng.
0021-9223, 87
, pp. 1018
–1024
.7.
Wang
, C. Y.
, 2003, “Slip Flow in a Triangular Duct—An Exact Solution
,” Z. Angew. Math. Mech.
0044-2267, 83
, pp. 629
–631
.8.
Duan
, Z. P.
, and Muzychka
, Y. S.
, 2007, “Slip Flow in Elliptic Microchannels
,” Int. J. Therm. Sci.
1290-0729, 46
, pp. 1104
–1111
.9.
Hong
, C.
, Asako
, Y.
, Turner
, S. E.
, and Faghri
, M.
, 2007, “Friction Factor Correlations for Gas Flow in Slip Flow Regime
,” ASME J. Fluids Eng.
0098-2202, 129
, pp. 1268
–1276
.10.
Yan
, X.
, and Wang
, Q.
, 2009, “Numerical Investigation of Combined Effects of Rarefaction and Compressibility for Gas Flow in Microchannels and Microtubes
,” ASME J. Fluids Eng.
0098-2202, 131
, 101201
.11.
Chu Werner
, K. -H.
, 1996, “Slip Flow Over a Rough Wavy Wall
,” Z. Angew. Math. Mech.
0044-2267, 76
, pp. 363
–364
.12.
Chu
, Z. H. K.
, 1999, “Flow in a Microtube With Corrugated Wall
,” Mech. Res. Commun.
0093-6413, 26
, pp. 167
–170
.13.
Chu
, K. H. W.
, 1999, “Small Knudsen Number Flow in a Corrugated Tube
,” Meccanica
0025-6455, 34
, pp. 133
–137
.14.
Duan
, Z. P.
, and Muzychka
, Y. S.
, 2008, “Effect of Corrugated Roughness on Developed Laminar Flow in Microtubes
,” ASME J. Fluids Eng.
0098-2202, 130
, 031102
.15.
Chu
, W. K.-H.
, 1996, “Stokes Slip Flow between Corrugated Walls
,” Z. Angew. Math. Phys.
0044-2275, 47
, pp. 591
–599
.16.
Vasudeviah
, M.
, 2001, “On Forced Convection Heat Transfer for a Stokes Flow in a Wavy Channel
,” Int. Commun. Heat Mass Transfer
0735-1933, 28
, pp. 289
–297
.17.
Vasudeviah
, M.
, and Balamurugan
, K.
, 1999, “Stokes Slip Flow in a Corrugated Pipe
,” Int. J. Eng. Sci.
0020-7225, 37
, pp. 1629
–1641
.18.
Duan
, Z. P.
, and Muzychka
, Y. S.
, 2010, “Effects of Axial Corrugated Roughness on Low Reynolds Number Slip Flow and Continuum Flow in Microtubes
,” ASME J. Heat Transfer
0022-1481, 132
, 041001
.19.
Hocking
, L. M.
, 1976, “A Moving Fluid Interface on a Rough Surface
,” J. Fluid Mech.
0022-1120, 76
, pp. 801
–817
.20.
Miksis
, M. J.
, and Davis
, S. H.
, 1994, “Slip Flow Over Rough and Coated Surfaces
,” J. Fluid Mech.
0022-1120, 273
, pp. 125
–139
.21.
Tuck
, E. O.
, and Kouzoubov
, A.
, 1995, “A Laminar Roughness Boundary Condition
,” J. Fluid Mech.
0022-1120, 300
, pp. 59
–70
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.