A wind tunnel study is conducted toward hybrid flow control of a full scale transport truck side mirror at ReD=3.2×105. A slim guide vane is employed for redirecting high-momentum flow toward the mirror wake region. Leading edge separation from the guide vane is reduced or eliminated by means of an alternating current -dielectric barrier discharge (AC-DBD) plasma actuator. Particle image velocimetry (PIV) measurements are performed at a range of velocities from 15 to 25 m/s and from windward to leeward angles from -5deg to 5deg. Time-averaged velocity fields are obtained at the center of the mirror for three scenarios: (a) reference case lacking any control elements, (b) guide vane only, and (c) combination of the guide vane and the AC-DBD plasma actuator. The comparison of cases demonstrates that at 25 m/s windward conditions (-5deg) the guide vane is capable of recovering 17% momentum with respect to the reference case. No significant change is observed by activating the AC-DBD plasma actuator. In contrast, at leeward conditions (5deg), the guide vane results in a −20% momentum loss that is rectified to a 6% recovery with actuation. The above implies that for a truck with two mirrors, 23% of momentum may be recovered.

References

1.
Seizo
,
K.
,
Tetsuo
,
F.
, and
Hirosumi
,
W.
,
1986
, “
Form Drag Reduction of a Bluff-Based Body With the Aid of Thin Circular-Arc Vanes
,”
Trans. Jpn. Soc. Mech. Eng., B (Nippon Kikai Gakkai Ronbunshu, B-hen)
,
52
(
480
), pp.
2913
2919
.
2.
Larsen
,
A.
,
Esdahl
,
S.
,
Andersen
,
J. E.
, and
Vejrum
,
T.
,
2000
, “
Storebælt Suspension Bridge—Vortex Shedding Excitation and Mitigation by Guide Vanes
,”
J. Wind Eng. Ind. Aerodyn.
,
88
(
2–3
), pp.
283
296
.
3.
Li
,
Y. S.
, and
Cumptsy
,
N. A.
,
1991
, “
Mixing in Axial Flow Compressors: Part II—Measurements in a Single-Stage Compressor and a Duct
,”
ASME J. Turbomach.
,
113
(
2
), pp.
166
174
.
4.
Marks
,
C. H.
, and
Buckley
,
F. T.
,
1978
, “
A Wind-Tunnel Study of the Effect of Turning Vanes on the Aerodynamic Drag of Tractor-Trailer Trucks
,”
ASME J. Fluids Eng.
,
100
(
4
), pp.
439
442
.
5.
Grundmann
,
S.
, and
Tropea
,
C.
,
2007
, “
Experimental Transition Delay Using Glow-Discharge Plasma Actuators
,”
Exp. Fluids
,
42
(
4
), pp.
653
657
.
6.
Little
,
J.
,
Nishihara
,
M.
,
Adamovich
,
I.
, and
Samimy
,
M.
,
2010
, “
High-Lift Airfoil Trailing Edge Separation Control Using a Single Dielectric Barrier Discharge Plasma Actuator
,”
Exp. Fluids
,
48
(
3
), pp.
521
537
.
7.
Marks
,
C. R.
,
Sondergaard
,
R.
,
Wolff
,
M.
, and
Anthony
,
R.
,
2011
, “
Experimental Comparison of DBD Plasma Actuators for Low Reynolds Number Separation Control
,”
ASME J. Turbomach.
,
135
(
1
), p.
011024
.
8.
Greenblatt
,
D.
,
Ben-Harav
,
A.
, and
Mueller-Vahl
,
H.
,
2014
, “
Dynamic Stall Control on a Vertical Axis Wind-Turbine Using Plasma Actuators
,”
AIAA J.
,
52
(
2
), pp.
456
462
.
9.
Duchmann
,
A.
,
Simon
,
B.
,
Tropea
,
C.
, and
Grundmann
,
S.
,
2014
, “
Dielectric Barrier Discharge Plasma for In-Flight Transition Delay
,”
AIAA J.
,
52
(
2
), pp.
358
367
.
10.
Corke
,
T. C.
,
Enloe
,
C. L.
, and
Wilkinson
,
S. P.
,
2010
, “
Dielectric Barrier Discharge Plasma Actuators for Flow Control
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
505
529
.
11.
Moreau
,
E.
,
2007
, “
Airflow Control by Non-Thermal Plasma Actuators
,”
J. Phys. D: Appl. Phys.
,
40
(
3
), pp.
605
636
.
12.
Kotsonis
,
M.
,
Ghaemi
,
S.
,
Veldhuis
,
L. L. M.
, and
Scarano
,
F.
,
2011
, “
Measurement of the Body Force Field of Plasma Actuators
,”
J. Phys. D: Appl. Phys.
,
44
(
4
), p.
045204
.
13.
Post
,
M.
, and
Corke
,
T.
,
2004
, “
Separation Control on High Angle of Attack Airfoil Using Plasma Actuators
,”
AIAA J.
,
42
(
11
), pp.
2177
2184
.
14.
Kelley
,
C. L.
,
Bowles
,
P.
,
Cooney
,
J.
,
He
,
C.
,
Corke
,
T. C.
,
Osborne
,
B.
,
Silkey
,
J.
, and
Zehnle
,
J.
,
2012
, “
High Mach Number Leading-Edge Flow Separation Control Using AC-DBD Plasma Actuators
,”
AIAA
Paper No. 2012-0906.
15.
D'Adamo
,
J.
,
Sosa
,
R.
, and
Artana
,
G.
,
2014
, “
Active Control of a Backward Facing Step Flow With Plasma Actuators
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121105
.
16.
Cooper
,
K. R.
, and
Leuschen
,
J.
,
2005
, “
Model and Full-Scale Wind Tunnel Tests of Second-Generation Aerodynamic Fuel Saving Devices for Tractor-Trailers
,” SAE Technical Paper No. 2005-01-3512.
17.
Miralbes
,
R.
, and
Castejon
,
L.
,
2012
, “
Aerodynamic Analysis of Some Boat Tails for Heavy Vehicles
,”
Int. J. Heavy Veh. Syst.
,
19
(
2
), pp.
115
127
.
18.
Choi
,
H.
,
Lee
,
J.
, and
Park
,
H.
,
2014
, “
Aerodynamics of Heavy Vehicles
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
441
468
.
19.
Scarano
,
F.
, and
Riethmuller
,
M.
,
2000
, “
Advances in Iterative Multigrid PIV Image Processing
,”
Exp. Fluids
,
29
(
Suppl. 1
), pp.
S51
S60
.
20.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry—A Practical Guide
, 2nd ed.,
Springer
,
New York
.
21.
Seifert
,
A.
,
Darabi
,
A.
, and
Wygnanski
,
I.
,
1996
, “
Delay of Airfoil Stall by Periodic Excitation
,”
J. Aircr.
,
33
(
4
), pp.
691
698
.
22.
Veluri
,
S. P.
,
Roy
,
C. J.
,
Ahmed
,
A.
,
Rifki
,
R.
,
Worley
,
J. C.
, and
Recktenwald
,
B.
,
2009
, “
Joint Computational/Experimental Aerodynamic Study of a Simplified Tractor-Trailer Geometry
,”
ASME J. Fluids Eng.
,
131
(
8
), p.
081201
.
23.
Östh
,
J.
, and
Krajnović
,
S.
,
2012
, “
The Flow Around a Simplified Tractor-Trailer Model Studied by Large Eddy Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
102
, pp.
36
47
.
You do not currently have access to this content.