A method to assess computational fluid dynamics (CFD) models for polydisperse granular solids in a multifluid flow is developed. The proposed method evaluates a consistency constraint, or a condition that an Eulerian multiphase solution for a monodisperse material in a single carrier fluid is invariant to an arbitrary decomposition into a pseudo-polydisperse mixture of multiple, identical fluid phases. The intent of this condition is to develop tests to assist model development and testing for multiphase fluid flows. When applied to two common momentum exchange models, the constraint highlights model failures for polydisperse solids interacting with a multifluid flow. It is found that when inconsistency occurs at the algebraic level, model failure clearly extends to application. When the models are reformulated to satisfy the consistency constraint, simple tests and application-scale simulations no longer display consistency failure.

References

1.
Gidaspow
,
D.
,
1986
, “
Hydrodynamics of Fiuidizatlon and Heat Transfer: Supercomputer Modeling
,”
ASME Appl. Mech. Rev.
,
39
(
1
), pp.
1
23
.
2.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
, “
A Generalized Method for Predicting the Minimum Fluidization Velocity
,”
AIChE J.
,
12
(
3
), pp.
610
612
.
3.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.
4.
Yin
,
X.
, and
Sundaresan
,
S.
,
2009
, “
Drag Law for Bidisperse Gas–Solid Suspensions Containing Equally Sized Spheres
,”
Ind. Eng. Chem. Res.
,
48
(
1
), pp.
227
241
.
5.
Holloway
,
W.
,
Yin
,
X.
, and
Sundaresan
,
S.
,
2010
, “
Fluid-Particle Drag in Inertial Polydisperse Gas–Solid Suspensions
,”
AIChE J.
,
56
(
8
), pp.
1995
2004
.
6.
Holloway
,
W.
,
Benyahia
,
S.
,
Hrenya
,
C. M.
, and
Sundaresan
,
S.
,
2011
, “
Meso-Scale Structures of Bidisperse Mixtures of Particles Fluidized by a Gas
,”
Chem. Eng. Sci.
,
66
(
19
), pp.
4403
4420
.
7.
Cello
,
F.
,
Di Renzo
,
A.
, and
Di Maio
,
F. P.
,
2010
, “
A Semi-Empirical Model for the Drag Force and Fluid-Particle Interaction in Polydisperse Suspensions
,”
Chem. Eng. Sci.
,
65
(
10
), pp.
3128
3139
.
8.
ANSYS FLUENT 14.0,
2011
, Theory Guide, ANSYS, Inc., Canonsburg, PA.
9.
Hrenya
,
C. M.
,
Pannala
,
S.
,
Syamlal
,
M.
, and
O'Brien
,
T.
,
2010
, “
Kinetic Theory for Granular Materials: Polydispersity
,”
Computational Gas–Solids Flows and Reacting Systems: Theory, Methods and Practice
,
IGI Global
,
Hershey, PA
, pp.
102
127
.
10.
Montante
,
G.
,
Micale
,
G.
,
Magelli
,
F.
, and
Brucato
,
A.
,
2001
, “
Experiments and CFD Predictions of Solid Particle Distribution in a Vessel Agitated With Four Pitched Blade Turbines
,”
Trans. ICHemE
,
79
(
8
), pp.
1005
1010
.
11.
Montante
,
G.
, and
Bakker
,
A.
,
2004
, “
Solid-Liquid Multiphase Flow Validation in Tall Stirred Vessels With Multiple Impeller Systems
,” Fluent, Inc., Lebanon, NH.
12.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
03
), p.
537
.
13.
Gidaspow
,
D.
,
Bezburuah
,
R.
, and
Ding
,
J.
,
1992
, “
Hydrodynamics of Circulating Fluidized Beds: Kinetic Theory Approach
,”
7th Fluidization Conference
,
Brisbane
Australia
, pp.
75
82
.
14.
Syamlal
,
M.
,
Rogers
,
W.
, and
O'Brien
,
T. J.
,
1993
, MFIX Documentation Theory Guide,
U.S. Department of Energy, Federal Energy Technology Center
,
Morgantown, WV
.
15.
Johnson
,
P. C.
, and
Jackson
,
R.
,
1987
, “
Frictional–Collisional Constitutive Relations for Granular Materials, With Application to Plane Shearing
,”
J. Fluid Mech.
,
176
, pp.
67
93
.
16.
Syamlal
,
M.
,
1987
, “
The Particle-Particle Drag Term in a Multiparticle Model of Fluidization
,” National Technical Information Service, Springfield, VA, Vol. 188.
You do not currently have access to this content.