Flow phenomena and mechanisms involved in cavitation breakdown, namely, a severe degradation of pump performance caused by cavitation, have been a longstanding puzzle. In this paper, results of high-speed imaging as well as pressure and performance measurements are used to elucidate the specific mechanism involved with cavitation breakdown within an axial waterjet pump. The experiments have been performed using geometrically identical aluminum and transparent acrylic rotors, the latter allowing uninhibited visual access to the cavitation phenomena within the blade passage. The observations demonstrate that interaction between the tip leakage vortex (TLV) and trailing edge of the attached cavitation near the rotor blade tip that covers the suction side (SS) of the blade plays a key role in processes leading to breakdown. In particular, the vortical cloud cavitation developing at the trailing edge of the sheet cavity near the blade tip is entrained and re-oriented by the TLV in a direction that is nearly perpendicular to the blade SS surface, and then convected downstream through the blade passage. Well above breakdown cavitation indices, these “perpendicular cavitating vortices” or PCVs occur in the region where blades do not overlap, and they only affect the local flow complexity with minimal impact on the global pump performance. With decreasing pressure and growing sheet cavitation coverage of the blade surface, this interaction occurs in the region where two adjacent rotor blades overlap, and the PCV extends from the SS surface of the originating blade to the pressure side (PS) of the neighboring blade. Cavitation breakdown begins when the PCV extends between blades, effectively blocking the tip region of the rotor passage. With further decrease in pressure, the PCVs grow in size and strength, and extend deeper into the passage, causing rapid degradation in performance. Accordingly, the casing pressure measurements confirm that attachment of the PCV to the PS of the blade causes rapid decrease in the pressure difference across this blade, i.e., a rapid decrease in blade loading near the tip. Similar large perpendicular vortical structures have been observed in the heavily loaded cavitating rocket inducers (Acosta, 1958, “An Experimental Study of Cavitating Inducers,” Proceedings of the Second Symposium on Naval Hydrodynamics, ONR/ACR-38, pp. 537–557 and Tsujimoto, 2007, “Tip Leakage and Backflow Vortex Cavitation,” Fluid Dynamics of Cavitation and Cavitating Turbopumps, L. d'Agostino and M. Salvetti, eds., Springer, Vienna, Austria, pp. 231–251), where they extend far upstream of the rotor and cause global flow instabilities.

References

1.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Oxford University Press
,
Oxford
, Chap. 7.
2.
Pearsall
,
I. S.
,
1973
, “
Design of Pump Impellers for Optimum Cavitation Performance
,”
Proc. Inst. Mech. Eng.
,
187
(
1
), pp.
667
678
.10.1243/PIME_PROC_1973_187_152_02
3.
Lindau
,
J. W.
,
Pena
,
C.
,
Baker
,
W. J.
,
Dreyer
,
J. J.
,
Moody
,
W. L.
,
Kunz
,
R. F.
, and
Paterson
,
E. G.
,
2012
, “
Modeling of Cavitating Flow Through Waterjet Propulsors
,”
Int. J. Rotating Mach.
,
2012
(
2012
), pp.
1
13
.10.1155/2012/716392
4.
Jakobsen
,
J. K.
,
1964
, “
On the Mechanism of Head Breakdown in Cavitating Inducers
,”
ASME J. Fluids Eng.
,
86
(
2
), pp.
291
305
.10.1115/1.3653066
5.
Arndt
,
R. E. A.
,
Arakeri
,
V. H.
, and
Higuchi
,
H.
,
1991
, “
Some Observations of Tip-Vortex Cavitation
,”
J. Fluid Mech.
,
229
, pp.
296
289
.
6.
Farrell
,
K. J.
, and
Billet
,
M. L.
,
1994
, “
A Correlation of Leakage Vortex Cavitation in Axial-Flow Pumps
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
551
557
.10.1115/1.2910312
7.
Laborde
,
R.
,
Chantrel
,
P.
, and
Mory
,
M.
,
2013
, “
Tip Clearance and Tip Vortex Cavitation in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
680
685
.10.1115/1.2819298
8.
Franc
,
J. P.
, and
Michel
,
J. M.
,
1988
, “
Unsteady Attached Cavitation on an Oscillating Hydrofoil
,”
J. Fluid Mech.
,
193
, pp.
171
189
.10.1017/S0022112088002101
9.
Ceccio
,
S. L.
, and
Brennen
,
C. E.
,
1992
, “
Dynamics of Attached Cavities on Bodies of Revolution
,”
ASME J. Fluids Eng.
,
114
(
1
), pp.
93
99
.10.1115/1.2910006
10.
Stutz
,
B.
, and
Reboud
,
J.-L.
,
1997
, “
Two-Phase Flow Structure of Sheet Cavitation
,”
Phys. Fluids
,
9
(
12
), pp.
3678
3686
.10.1063/1.869505
11.
Callenaere
,
M.
,
Franc
,
J.-P.
,
Michel
,
J.-M.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.10.1017/S0022112001005420
12.
Reisman
,
G. E.
,
Wang
,
Y.-C.
, and
Brennen
,
C. E.
,
1998
, “
Observations of Shock Waves in Cloud Cavitation
,”
J. Fluid Mech.
,
355
, pp.
255
283
.10.1017/S0022112097007830
13.
Pham
,
T. M.
, and
Fruman
,
D. H.
,
1999
, “
Investigation of Unsteady Sheet Cavitation and Cloud Cavitation Mechanisms
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
289
296
.10.1115/1.2822206
14.
Laberteaux
,
K. R.
, and
Ceccio
,
S. L.
,
2001
, “
Partial Cavity Flows. Part 2. Cavities Forming on Test Objects With Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
43
63
.10.1017/S0022112000002937
15.
Yokota
,
K.
,
Kurahara
,
K.
,
Kataoka
,
D.
,
Tsujimoto
,
Y.
, and
Acosta
,
A. J.
,
1999
, “
A Study of Swirling Backflow and Vortex Structure at the Inlet of an Inducer
,”
JSME Int. J.
,
42
(
3
), pp.
451
459
.10.1299/jsmeb.42.451
16.
Yamamoto
,
K.
, and
Tsujimoto
,
Y.
,
2009
, “
Backflow Vortex Cavitation and Its Effects on Cavitation Instabilities
,”
Int. J. Fluid Mach. Syst.
,
2
(
1
), pp.
40
54
.10.5293/IJFMS.2009.2.1.040
17.
Uzol
,
O.
,
Chow
,
Y. C.
,
Katz
,
J.
, and
Meneveau
,
C.
,
2002
, “
Unobstructed Particle Image Velocimetry Measurements Within an Axial Turbo-Pump Using Liquid and Blades With Matched Refractive Indices
,”
Exp. Fluids
,
33
(
6
), pp.
909
919
.10.1007/s00348-002-0494-8
18.
Bai
,
K.
, and
Katz
,
J.
,
2014
, “
On the Refractive Index of Sodium Iodide Solutions for Index Matching in PIV
,”
Exp. Fluids
,
55
(
4
), pp.
1
6
.10.1007/s00348-014-1704-x
19.
Patil
,
K. R.
,
Tripathi
,
A. D.
,
Pathak
,
G.
, and
Katti
,
S. S.
,
1991
, “
Thermodynamic Properties of Aqueous Electrolyte Solutions. 2. Vapor Pressure of Aqueous Solutions of Sodium Bromide, Sodium Iodide, Potassium Chloride, Potassium Bromide, Potassium Iodide, Rubidium Chloride, Cesium Chloride, Cesium Bromide, Cesium Iodide
,”
J. Chem. Eng.
,
36
(
2
), pp.
225
230
.10.1021/je00002a021
20.
Borgnakke
,
C.
, and
Sonntag
,
R. E.
,
2009
,
Fundamentals of Thermodynamics
,
Wiley
,
New York
.
21.
Michael
,
T. J.
,
Schroeder
,
S. D.
, and
Becnel
,
A. J.
,
2008
, “
Design of the ONR AxWJ-2 Axial Flow Waterjet Pump
,” Hydromechanics Department Report No. NSWCCD-50TR-2008/066.
22.
Tan
,
D. Y.
,
Keller
,
J.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2012
, “
Investigation of Cavitation Phenomena Within an Axial Waterjet Pump
,”
International Symposium on Cavitation
,
C.-D.
Ohl
,
E.
Klaseboer
,
S. W.
Ohl
,
S. W.
Gong
, and
B. C.
Khoo
, eds.,
Research Publishing Services
,
Singapore
, pp.
399
406
.
23.
Tan
,
D. Y.
,
Keller
,
J.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2012
, “
Flow Visualization Using Cavitation Within the Rotor and Stator Blade Passages of an Axial Waterjet Pump Rotor at and Below Best Efficiency Point
,”
29th Symposium on Naval Hydrodynamics
, Gothenburg, Sweden, pp.
395
404
.
24.
Chesnakas
,
C. J.
,
Donnelly
,
M. J.
,
Pfitsch
,
D. W.
,
Becnel
,
A. J.
, and
Schroeder
,
S. D.
,
2009
, “
Performance Evaluation of the ONR Axial Waterjet 2 (AxWJ-2)
,” 2009 Hydromechanics Department Report No. NSWCCD-50TR-2008/089.
25.
Guinard
,
P.
,
Fuller
,
T.
, and
Acosta
,
A. J.
,
1953
, “
Experimental Study of Axial Flow Pump Cavitation
,” California Institute of Technology Hydrodynamics Laboratory Report No. E-19.3, pp.
1
19
.
26.
Oshima
,
M.
, and
Kawaguchi
,
K.
,
1963
, “
Experimental Study of Axial and Mixed Flow Pumps
,”
IAHR Symposium on Cavitation and Hydraulic Machinery
, Sendai, Japan, pp.
397
416
.
27.
Franc
,
J. P.
, and
Michel
,
J. M.
,
1985
, “
Attached Cavitation and the Boundary Layer: Experimental Investigation and Numerical Treatment
,”
J. Fluid Mech.
,
154
, pp.
63
90
.10.1017/S0022112085001422
28.
Le
,
Q.
,
Franc
,
J. P.
, and
Michel
,
J. M.
,
1993
, “
Partial Cavities: Global Behavior and Mean Pressure Distribution
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
243
248
.10.1115/1.2910131
29.
Reisman
,
G. E.
, and
Brennen
,
C. E.
,
1996
, “
Pressure Pulses Generated by Cloud Cavitation
,”
Fluids Engineering Division Conference
, pp.
319
328
.
30.
Arndt
,
R. E. A.
,
Song
,
C. C. S.
,
Kjeldsen
,
M.
,
He
,
J.
, and
Keller
,
A.
,
2000
, “
Instability of Partial Cavitation: A Numerical/Experimental Approach
,”
23rd Symposium on Naval Hydrodynamics Val de Reuil France
, pp.
140
155
.
31.
De Lange
,
D. F.
, and
De Bruin
,
G. J.
,
1998
, “
Sheet Cavitation and Cloud Cavitation, Re-Entrant Jet and Three-Dimensionality
,”
Appl. Sci. Res.
,
58
(
1–4
), pp.
91
114
.10.1007/978-94-011-4986-0_7
32.
Tan
,
D.
,
Li
,
Y.
,
Miorini
,
R.
,
Vagnoni
,
E.
,
Wilkes
,
I.
, and
Katz
,
J.
,
2014
, “
Role of Large Scale Cavitating Vortical Structures in the Rotor Passage of an Axial Waterjet Pump in Performance Breakdown
,”
Symposium on Naval Hydrodynamics
, pp. 1–13.
33.
Wu
,
H.
,
Miorini
,
R. L.
,
Tan
,
D.
, and
Katz
,
J.
,
2012
, “
Turbulence Within the Tip-Leakage Vortex of an Axial Waterjet Pump
,”
AIAA J.
,
50
(
11
), pp.
2574
2587
.10.2514/1.J051491
34.
Wu
,
H.
,
Tan
,
D.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Three-Dimensional Flow Structures and Associated Turbulence in the Tip Region of a Waterjet Pump Rotor Blade
,”
Exp. Fluids
,
51
(
6
), pp.
1721
1737
.10.1007/s00348-011-1189-9
35.
Wu
,
H.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2010
, “
Measurements of the Tip Leakage Vortex Structures and Turbulence in the Meridional Plane of an Axial Water-Jet Pump
,”
Exp. Fluids
,
50
(
4
), pp.
989
1003
.10.1007/s00348-010-0975-0
36.
Miorini
,
R. L.
,
Wu
,
H.
, and
Katz
,
J.
,
2012
, “
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
,”
ASME J. Turbomach.
,
134
(
3
), p.
031018
.10.1115/1.4003065
37.
Tan
,
D.
,
Li
,
Y.
,
Wilkes
,
I.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2014
, “
Visualization and Time Resolved PIV Measurements of the Flow in the Tip Region of a Subsonic Compressor Rotor
,”
ASME J. Turbomach.
,
137
(
4
), p.
041007
.10.1115/1.4028433
38.
Yamada
,
K.
,
Furukawa
,
M.
,
Nakano
,
T.
,
Inoue
,
M.
, and
Funazaki
,
K.
,
2004
, “
Unsteady Three-Dimensional Flow Phenomena Due to Breakdown of Tip Leakage Vortex in a Transonic Axial Compressor Rotor
,”
ASME
Paper No. GT2004-53745.10.1115/GT2004-53745
39.
Huang
,
X.
,
Chen
,
H.
, and
Fu
,
S.
,
2008
, “
CFD Investigation on the Circumferential Grooves Casing Treatment of Transonic Compressor
,”
ASME
Paper No. GT2008-51107.10.1115/GT2008-51107
40.
Acosta
,
A. J.
,
1958
, “
An Experimental Study of Cavitating Inducers
,”
Second Symposium on Naval Hydrodynamics
, ONR/ACR-38, pp.
537
557
.
41.
Stripling
,
L. B.
, and
Acosta
,
A. J.
,
1962
, “
Cavitation in Turbopumps—Part 1
,”
J. Basic Eng.
,
84
(
3
), pp.
326
338
.10.1115/1.3657314
42.
Tsujimoto
,
Y.
,
2007
, “
Tip Leakage and Backflow Vortex Cavitation
,”
Fluid Dynamics of Cavitation and Cavitating Turbopumps
,
L.
d'Agostino
, and
M.
Salvetti
, eds.,
Springer
,
Vienna, Austria
, pp.
231
251
.
43.
Coutier-Delgosha
,
O.
,
Caignaert
,
G.
,
Bois
,
G.
, and
Leroux
,
J.-B.
,
2012
, “
Influence of the Blade Number on Inducer Cavitating Behavior
,”
ASME J. Fluids Eng.
,
134
(
8
), pp.
1
11
.10.1115/1.4006693
44.
Torre
,
L.
,
Pasini
,
A.
,
Cervone
,
A.
,
Pace
,
G.
,
Miloro
,
P.
, and
d'Agostino
,
L.
,
2011
, “
Effect of Tip Clearance on the Performance of a Three-Bladed Axial Inducer
,”
J. Propul. Power
,
27
(
4
), pp.
890
898
.10.2514/1.B34067
45.
Tomaru
,
H.
,
Ugajin
,
H.
,
Kawasaki
,
S.
, and
Nakano
,
M.
,
2007
, “
Suppression of Cavitation Surge in a Turbopump Inducer by the Backflow Restriction Step
,”
43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics
, pp. 1–8.
46.
Choi
,
Y.-D.
,
Kurokawa
,
J.
, and
Imamura
,
H.
,
2007
, “
Suppression of Cavitation in Inducers by J-Grooves
,”
ASME J. Fluids Eng.
,
129
(
1
), pp.
15
22
.10.1115/1.2375126
47.
Hashimoto
,
T.
,
Yoshida
,
M.
,
Watanabe
,
M.
,
Kamijo
,
K.
, and
Tsujimoto
,
Y.
,
1997
, “
Experimental Study of Rotating Cavitation of Rocket Propellant Pump Inducers
,”
J. Propul. Power
,
13
(
4
), pp.
488
494
.10.2514/2.5210
48.
Yoshida
,
Y.
,
Tsujimoto
,
Y.
,
Kataoka
,
D.
,
Horiguchi
,
H.
, and
Wahl
,
F.
,
2001
, “
Effects of Alternate Leading Edge Cutback on Unsteady Cavitation in 4-Bladed Inducers
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
762
770
.10.1115/1.1411969
49.
Chivers
,
T. C.
,
1969
, “
Cavitation in Centrifugal Pumps
,”
Proc. Inst. Mech. Eng.
,
184
(
2
), pp.
37
68
.10.1243/PIME_PROC_1969_184_008_02
50.
Gross
,
L. A.
,
1973
, “
An Experimental Investigation of Two-Phase Liquid Oxygen Pumping
,” Marshall Space Flight Center, Huntsville, AL, Report No. NASA TN D-7451.
51.
Tsujimoto, Y., 2015, Private communication.
You do not currently have access to this content.