Water passes freely through a hydraulic turbine in the absence of power requirements or during maintenance of the transmission lines, spillways, or dam. Moreover, the turbine operates under no-load conditions prior to generator synchronization during startup and after the generator disconnection from the grid load for shutdown. High-velocity swirling flow during spin-no-load (SNL) induces unsteady pressure pulsations in the turbine, and these pulsations cause fatigue in the blades. To investigate the amplitude of unsteady pressure loading, transient pressure measurements were carried out in a model Francis turbine during SNL. A total of six pressure sensors were mounted inside the turbine, i.e., one in the vaneless space, three on the blade surfaces, and two in the draft tube, and three discharge conditions were investigated over the operating range of the turbine. Analysis of the unsteady pressure data showed that the runner blades experience high-amplitude pressure loading during SNL. The amplitudes at all sensor locations were high compared with those under the normal operating condition of the turbine, i.e., the best efficiency point (BEP), and increased as the discharge through the turbine increased.

References

1.
Kuznetsov
,
I.
,
Zakharov
,
A.
,
Orekhov
,
G.
,
Minakov
,
A.
,
Dekterev
,
A.
, and
Platonov
,
D.
,
2012
, “
Investigation of Free Discharge Through the Hydro Units of High Head Francis Turbine
,”
Proc. IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
5
), p.
052002
.10.1088/1755-1315/15/5/052002
2.
Trivedi
,
C.
,
Cervantes
,
M.
,
Gandhi
,
B. K.
, and
Dahlhaug
,
O. G.
,
2014
, “
Experimental Investigations of Transient Pressure Variations in a High Head Model Francis Turbine During Start-Up and Shutdown
,”
J. Hydrodyn., Ser. B
,
26
(
2
), pp.
277
290
.10.1016/S1001-6058(14)60031-7
3.
Trivedi
,
C.
,
Cervantes
,
M. J.
,
Gandhi
,
B. K.
, and
Dahlhaug
,
O. G.
,
2014
, “
Transient Pressure Measurements on a High Head Model Francis Turbine During Emergency Shutdown, Total Load Rejection, and Runaway
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121107
.10.1115/1.4027794
4.
Trivedi
,
C.
,
Gandhi
,
B.
, and
Cervantes
,
M.
,
2013
, “
Effect of Transients on Francis Turbine Runner Life: A Review
,”
J. Hydraul. Res.
,
51
(
2
), pp.
121
132
.10.1080/00221686.2012.732971
5.
Shingai
,
K.
,
Okamoto
,
N.
,
Tamura
,
Y.
, and
Tani
,
K.
,
2014
, “
Long-Period Pressure Pulsation Estimated in Numerical Simulations for Excessive Flow Rate Condition of Francis Turbine
,”
ASME J. Fluids Eng.
,
136
(
7
), p.
071105
.10.1115/1.4026584
6.
Widmer
,
C.
,
Staubli
,
T.
, and
Ledergerber
,
N.
,
2011
, “
Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump-Turbines
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041101
.10.1115/1.4003874
7.
Lee
,
T. S.
, and
Pejovic
,
S.
,
1996
, “
Air Influence on Similarity of Hydraulic Transients and Vibrations
,”
ASME J. Fluids Eng.
,
118
(
4
), pp.
706
709
.10.1115/1.2835499
8.
Hasmatuchi
,
V.
,
Farhat
,
M.
,
Roth
,
S.
,
Botero
,
F.
, and
Avellan
,
F.
,
2011
, “
Experimental Evidence of Rotating Stall in a Pump-Turbine at Off-Design Conditions in Generating Mode
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051104
.10.1115/1.4004088
9.
Ciocan
,
G. D.
,
Iliescu
,
M. S.
,
Vu
,
T. C.
,
Nennemann
,
B.
, and
Avellan
,
F.
,
2007
, “
Experimental Study and Numerical Simulation of the Flindt Draft Tube Rotating Vortex
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
146
158
.10.1115/1.2409332
10.
Trivedi
,
C.
,
Cervantes
,
M. J.
,
Gandhi
,
B. K.
, and
Dahlhaug
,
O. G.
,
2014
, “
Pressure Measurements on a High-Head Francis Turbine During Load Acceptance and Rejection
,”
J. Hydraul. Res.
,
52
(
2
), pp.
283
297
.10.1080/00221686.2013.854846
11.
Escaler
,
X.
,
Ekanger
,
J. V.
,
Francke
,
H. H.
,
Kjeldsen
,
M.
, and
Nielsen
,
T. K.
,
2014
, “
Detection of Draft Tube Surge and Erosive Blade Cavitation in a Full-Scale Francis Turbine
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011103
.10.1115/1.4027541
12.
Gagnon
,
M.
,
Tahan
,
S.
,
Bocher
,
P.
, and
Thibault
,
D.
,
2010
, “
Impact of Startup Scheme on Francis Runner Life Expectancy
,”
Proc. IOP Conf. Ser.: Earth Environ. Sci.
,
12
(
1
), p.
012107
.10.1088/1755-1315/12/1/012107
13.
Melot
,
M.
,
Monette
,
C.
,
Coutu
,
A.
, and
Nenneman
,
B.
,
2013
, “
Speed-No-Load Operating Condition: A New Standard Francis Runner Design Procedure to Predict Static Stresses
,”
Hydro 2013
,
Innsbruck
,
Austria
, Oct. 7–9.
14.
Nicolle
,
J.
,
Morissette
,
J.
, and
Giroux
,
A.
,
2012
, “
Transient CFD Simulation of a Francis Turbine Startup
,”
Proc. IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
6
), p.
062014
.10.1088/1755-1315/15/6/062014
15.
Bjorkvoll
,
T.
, and
Bakken
,
B. H.
,
2002
, “
Calculating the Start-Up Costs of Hydropower Generators
,”
14th Power Systems Computation Conference (PSCC)
,
Sevilla
,
Spain
, June 24–28.
16.
Coutu
,
A.
,
Lauzon
,
J.
,
Monette
,
C.
,
Nennemann
,
B.
, and
Huang
,
X.
,
2013
, “
Francis Runner: Cost of Operation, Presentation
,”
5th IAHR International Workshop on Cavitation and Dynamic Problems in Hydraulic Machinery
,
Lausanne
,
Switzerland
, Sept. 8–11.
17.
Nilsson
,
O.
, and
Sjelvgren
,
D.
,
1997
, “
Hydro Unit Start-Up Costs and Their Impact on the Short Term Scheduling Strategies of Swedish Power Producers
,”
IEEE Trans. Power Syst.
,
12
(
1
), pp.
38
44
.10.1109/59.574921
18.
Bakken
,
B. H.
, and
Bjorkvoll
,
T.
,
2002
, “
Hydropower Unit Start-Up Costs
,”
Power Engineering Society Summer Meeting
,
IEEE
,
Chicago
, IL, July 25, Vol.
3
, pp.
1522
1527
10.1109/PESS.2002.1043646.
19.
IEC 60193
,
1999
, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines: Model Acceptance Tests
,”
International Standard, International Electrotechnical Commission
,
Geneva
,
Switzerland
, p.
578
.
20.
Trivedi
,
C.
,
Cervantes
,
M. J.
,
Gandhi
,
B. K.
, and
Dahlhaug
,
O. G.
,
2013
, “
Experimental and Numerical Studies for a High Head Francis Turbine at Several Operating Points
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111102
.10.1115/1.4024805
21.
Chen
,
J.
,
Jönsson
,
P.
,
Tamura
,
M.
,
Gu
,
Z.
,
Matsushita
,
B.
, and
Eklundh
,
L.
,
2004
, “
A Simple Method for Reconstructing a High-Quality Ndvi Time-Series Data Set Based on the Savitzky–Golay Filter
,”
Remote Sens. Environ.
,
91
(
3–4
), pp.
332
344
.10.1016/j.rse.2004.03.014
22.
Savitzky
,
A.
, and
Golay
,
M. J. E.
,
1964
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
.10.1021/ac60214a047
You do not currently have access to this content.