The primary objective is to perform a large eddy simulation (LES) using shear improved Smagorinsky model (SISM) to resolve the large-scale structures, which are primarily responsible for shear layer oscillations and acoustic loads in a cavity. The unsteady, three-dimensional (3D), compressible Navier–Stokes (N–S) equations have been solved following AUSM+-up algorithm in the finite-volume formulation for subsonic and supersonic flows, where the cavity length-to-depth ratio was 3.5 and the Reynolds number based on cavity depth was 42,000. The present LES resolves the formation of shear layer, its rollup resulting in large-scale structures apart from shock–shear layer interactions, and evolution of acoustic waves. It further indicates that hydrodynamic instability, rather than the acoustic waves, is the cause of self-sustained oscillation for subsonic flow, whereas the compressive and acoustic waves dictate the cavity oscillation, and thus the sound pressure level for supersonic flow. The present LES agrees well with the experimental data and is found to be accurate enough in resolving the shear layer growth, compressive wave structures, and radiated acoustic field.

References

1.
Krishnamurty
,
K.
,
1955
, “
Acoustic Radiation From Two-Dimensional Rectangular Cutouts in Aerodynamic Surfaces
,”
National Advisory Committee for Aeronautics
, Washington, DC, Technical Report No. NACA TN-3487.
2.
Tam
,
C. K. W.
, and
Block
,
P. J. W.
,
1978
, “
On the Tones and Pressure Oscillations Induced by Flow Over Rectangular Cavities
,”
J. Fluid Mech.
,
89
(
02
), pp.
373
399
.
3.
Rockwell
,
D.
, and
Knisely
,
C.
,
1980
, “
Observations of the Three-Dimensional Nature of Unstable Flow Past a Cavity
,”
Phys. Fluids
,
23
(
3
), pp.
425
431
.
4.
Knisely
,
C.
, and
Rockwell
,
D.
,
1982
, “
Self-Sustained Low-Frequency Components in an Impinging Shear Layer
,”
J. Fluid Mech.
,
116
, pp.
157
186
.
5.
Gharib
,
M.
, and
Roshko
,
A.
,
1987
, “
The Effect of Oscillations of Cavity Drag
,”
J. Fluid Mech.
,
177
, pp.
501
530
.
6.
Pereira
,
J. C. F.
, and
Sousa
,
J. M. M.
,
1994
, “
Influence of Impingement Edge Geometry on Cavity Flow Oscillations
,”
AIAA J.
,
32
(
8
), pp.
1737
1740
.
7.
Forestier
,
N.
,
Geffroy
,
P.
, and
Jacquin
,
L.
,
2000
, “
Etude expérimentale des propriétés instationnaires d'une couche de mélange compressible sur une cavité: cas d'une cavité ouverte peu profonde
,” ONERA, Châtillon, France, Rapport Technique Rt 22/00153 DAFE.
8.
Forestier
,
N.
,
Jacquin
,
L.
, and
Geffroy
,
P.
,
2003
, “
The Mixing Layer Over a Deep Cavity at High-Subsonic Speed
,”
J. Fluid Mech.
,
475
, pp.
101
145
.
9.
Tracy
,
M. B.
, and
Plentovich
,
E. B.
,
1997
, “
Cavity Unsteady-Pressure Measurements at Subsonic and Transonic Speeds
,” NASA, Washington, DC, Technical Paper 3669.
10.
Neary
,
M.
, and
Stephanoff
,
K.
,
1987
, “
Shear Layer Driven Transition in a Rectangular Cavity
,”
Phys. Fluids
,
30
(
10
), pp.
2936
2946
.
11.
Rossiter
,
J. E.
,
1964
, “
Wind Tunnel Experiments on the Flow Over Rectangular Cavities at Subsonic and Transonic Speeds
,” Aeronautical Research Council, Great Britain, Reports and Memoranda No. 3438.
12.
Heller
,
H. H.
,
Holmes
,
D.
, and
Covert
,
E. E.
,
1971
, “
Flow-Induced Pressure Oscillations in Shallow Cavities
,”
J. Sound Vib.
,
18
(
4
), pp.
545
553
.
13.
Bilanin
,
A. J.
, and
Covert
,
E.
,
1973
, “
Estimation of Possible Excitation Frequencies for Shallow Rectangular Cavities
,”
AIAA J.
,
11
(
3
), pp.
347
351
.
14.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1979
, “
Self-Sustained Oscillations of Impinging Free Shear Layers
,”
Annu. Rev. Fluid Mech.
,
11
(
1
), pp.
67
94
.
15.
Rockwell
,
D.
,
1983
, “
Oscillations of Impinging Shear Layers
,”
AIAA J.
,
21
(
5
), pp.
645
664
.
16.
Kegerise
,
M. A.
,
Spina
,
E. F.
,
Garg
,
S.
, and
Cattafesta
,
L. N.
, III
,
2004
, “
Mode-Switching and Nonlinear Effects in Compressible Flow Over a Cavity
,”
Phys. Fluids
,
16
(
3
), pp.
678
687
.
17.
Sarohia
,
V.
,
1975
, “
Experimental and Analytical Investigation of Oscillations in Flows Over Cavities
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
18.
Suponitsky
,
V.
,
Avital
,
E.
, and
Gaster
,
M.
,
2005
, “
On Three-Dimensionality and Control of Incompressible Cavity Flow
,”
Phys. Fluids
,
17
(
10
), p.
104103
.
19.
Heller
,
H.
, and
Delfs
,
J.
,
1996
, “
Letter to the Editor: Cavity Pressure Oscillations: The Generating Mechanism Visualized
,”
J. Sound Vib.
,
196
(
2
), pp.
248
252
.
20.
Murray
,
R. C.
, and
Elliott
,
G. S.
,
2001
, “
Characteristics of the Compressible Shear Layer Over a Cavity
,”
AIAA J.
,
39
(
5
), pp.
846
856
.
21.
Chandra
,
B. U.
, and
Chakravarthy
,
S. R.
,
2005
, “
Experimental Investigation of Cavity-Induced Acoustic Oscillations in Confined Supersonic Flow
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
761
769
.
22.
Zhuang
,
N.
,
Alvi
,
F. S.
,
Alkislar
,
M. B.
, and
Shih
,
C.
,
2006
, “
Supersonic Cavity Flows and Their Control
,”
AIAA J.
,
44
(
9
), pp.
2118
2128
.
23.
Zhang
,
X.
,
1995
, “
Compressible Cavity Flow Oscillation due to Shear Layer Instabilities and Pressure Feedback
,”
AIAA J.
,
33
(
8
), pp.
1404
1411
.
24.
Tam
,
C.-J.
,
Orkwis
,
P. D.
, and
Disimile
,
P. J.
,
1996
, “
Algebraic Turbulence Model Simulations of Supersonic Open-Cavity Flow Physics
,”
AIAA J.
,
34
(
11
), pp.
2255
2260
.
25.
Sun
,
M.
,
Wang
,
H.
,
Chen
,
T.
,
Liang
,
J.
,
Liu
,
W.
, and
Wang
,
Z.
,
2011
, “
Parametric Study on Self-Sustained Oscillation Characteristics of Cavity Flame Holders in Supersonic Flows
,”
Proc. Inst. Mech. Eng., Part G
,
225
(
6
), pp.
597
618
.
26.
Gloerfelt
,
X.
,
Bailly
,
C.
, and
Juvé
,
D.
,
2003
, “
Direct Computation of the Noise Radiated by a Subsonic Cavity Flow and Application of Integral Methods
,”
J. Sound Vib.
,
266
(
1
), pp.
119
146
.
27.
Colonius
,
T.
,
Basu
,
A. J.
, and
Rowley
,
C. W.
,
1999
, “
Numerical Investigation of the Flow Past a Cavity
,”
AIAA
Paper No. 99-1912.
28.
Lamp
,
A. M.
, and
Chokani
,
N.
,
1997
, “
Computation of Cavity Flows With Suppression Using Jet Blowing
,”
J. Aircr.
,
34
(
4
), pp.
545
551
.
29.
Fuglsang
,
D. F.
, and
Cain
,
A. B.
,
1992
, “
Evaluation of Shear Layer Cavity Resonance Mechanisms by Numerical Simulation
,”
AIAA
Paper No. 92-0555.
30.
Zhang
,
X.
,
Rona
,
A.
, and
Edwards
,
J. A.
,
1998
, “
The Effect of Trailing Edge Geometry on Cavity Flow Oscillation Driven by a Supersonic Shear Layer
,”
Aeronaut. J.
,
102
, pp.
129
136
.
31.
Slimon
,
S.
,
Davis
,
D.
, and
Wagner
,
C.
,
1998
, “
Far-Field Aero Acoustic Computation of Unsteady Cavity Flows
,”
AIAA
Paper No. 98-0285.
32.
Rowley
,
C. W.
,
Colonius
,
T.
, and
Basu
,
A. J.
,
2002
, “
On Self-Sustained Oscillation in Two-Dimensional Compressible Flow Over Rectangular Cavities
,”
J. Fluid Mech.
,
455
, pp.
315
346
.
33.
Chang
,
K.
,
Constantinescu
,
G.
, and
Park
,
S. O.
,
2006
, “
Analysis of the Flow and Mass Transfer Processes for the Incompressible Flow Past an Open Cavity With a Laminar and a Fully Turbulent Incoming Boundary Layer
,”
J. Fluid Mech.
,
561
, pp.
113
145
.
34.
Larcheveque
,
L.
,
Sagaut
,
P.
,
Le
,
T.-H.
, and
Comte
,
P.
,
2004
, “
Large-Eddy Simulation of a Compressible Flow in a Three-Dimensional Open Cavity at High Reynolds Number
,”
J. Fluid Mech.
,
516
, pp.
265
301
.
35.
Rubio
,
G.
,
De Roeck
,
W.
,
Baelmans
,
M.
, and
Desmet
,
W.
,
2007
, “
Numerical Identification of Flow Induced Oscillation Modes in Rectangular Cavities Using Large Eddy Simulation
,”
Int. J. Numer. Methods Fluids
,
53
(
5
), pp.
851
866
.
36.
Brès
,
G. A.
, and
Colonius
,
T.
,
2008
, “
Three-Dimensional Instabilities in Compressible Flow Over Open Cavities
,”
J. Fluid Mech.
,
599
, pp.
309
339
.
37.
Li
,
W.
,
Nonomura
,
T.
,
Oyama
,
A.
, and
Fujii
,
K.
,
2013
, “
On the Feedback Mechanism in Supersonic Cavity Flows
,”
Phys. Fluids
,
25
(
5
), p.
056101
.
38.
Wang
,
H.
,
Sun
,
M.
,
Qin
,
N.
,
Wu
,
H.
, and
Wang
,
Z.
,
2013
, “
Characteristics of Oscillations in Supersonic Open Cavity Flows
,”
Flow, Turbul. Combust.
,
90
(
1
), pp.
121
142
.
39.
Vreman
,
B.
,
Geurts
,
B.
, and
Kuerten
,
H.
,
1995
, “
A Priori Tests of Large Eddy Simulation of the Compressible Plane Mixing Layer
,”
J. Eng. Math.
,
29
(
4
), pp.
299
327
.
40.
Larchevêque
,
L.
,
Sagaut
,
P.
,
Mary
,
I.
,
Labbé
,
O.
, and
Comte
,
P.
,
2003
, “
Large-Eddy Simulation of a Compressible Flow Past a Deep Cavity
,”
Phys. Fluids
,
15
(
1
), pp.
193
210
.
41.
Leveque
,
E.
,
Toschi
,
F.
,
Shao
,
L.
, and
Bertoglio
,
J.
,
2007
, “
Shear-Improved Smagorinsky Model for Large-Eddy Simulation of Wall-Bounded Turbulent Flows
,”
J. Fluid Mech.
,
570
, pp.
491
502
.
42.
Cahuzac
,
A.
,
Boudet
,
J.
,
Borgnat
,
P.
, and
Leveque
,
E.
,
2010
, “
Smoothing Algorithms for Mean-Flow Extraction in Large-Eddy Simulation of Complex Turbulent Flows
,”
Phys. Fluids
,
22
(
12
), p.
125104
.
43.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Li
,
S.
,
1991
, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids
,
3
(
11
), pp.
2746
2757
.
44.
Liou
,
M.-S.
,
2006
, “
A Sequel to AUSM, Part II: AUSM+-Up for All Speeds
,”
J. Comput. Phys.
,
214
(
1
), pp.
137
170
.
45.
Venkatakrishnan
,
V.
,
1995
, “
Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids With Limiters
,”
J. Comput. Phys.
,
118
(
1
), pp.
120
130
.
46.
Alam
,
M.
, and
Sandham
,
N. D.
,
2000
, “
Direct Numerical Simulation of ‘Short’ Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
410
, pp.
1
28
.
47.
Huerre
,
P.
, and
Monkewitz
,
P.
,
1985
, “
Absolute and Convective Instabilities in Free Shear Layers
,”
J. Fluid Mech.
,
159
, pp.
151
168
.
48.
Hunt
,
J. C.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” CTR Summer Program NASA Ames/Stanford University, pp.
193
208
.
49.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1990
, “
Local and Global Instabilities in Spatially Developing Flows
,”
Annu. Rev. Fluid Mech.
,
22
(
1
), pp.
473
537
.
You do not currently have access to this content.