Simplifying assumptions and empirical closure relations are often required in existing two-phase flow modeling based on first-principle equations, hence limiting its prediction accuracy and in some instances compromising safety and productivity. State-of-the-art models used in the industry still include correlations that were developed in the sixties, whose prediction performances are at best acceptable. To better improve the prediction accuracy and encompass all pipe inclinations and flow patterns, we propose in this paper an artificial neural network (ANN)-based model for steady-state two-phase flow liquid holdup estimation in pipes. Deriving the best input combination among a large reservoir of dimensionless Π groups with various fluid properties, pipe characteristics, and operating conditions is a laborious trial-and-error procedure. Thus, a self-adaptive genetic algorithm (GA) is proposed in this work to both ease the computational complexity associated with finding the elite ANN model and lead to the best prediction accuracy of the liquid holdup. The proposed approach was implemented using the Stanford multiphase flow database (SMFD), chosen for being among the largest and most complete databases in the literature. The performance of the proposed approach was further compared to that of two prominent models, namely a standard empirical correlation-based model and a mechanistic model. The obtained results along with the comparison analysis confirmed the enhanced accuracy of the proposed approach in predicting liquid holdup for all pipe inclinations and fluid flow patterns.

References

1.
Diener
,
R.
, and
Friedel
,
L.
,
1998
, “
Reproductive Accuracy of Selected Void Fraction Correlations for Horizontal and Vertical Upflow
,”
Forsch. Ingenieurwes.
,
64
(
4–5
), pp.
87
97
.
2.
Woldesemayat
,
M. A.
, and
Ghajar
,
A. J.
,
2007
, “
Comparison of Void Fraction Correlations for Different Flow Patterns in Horizontal and Upward Inclined Pipes
,”
Int. J. Multiphase Flow
,
33
(
4
), pp.
347
370
.
3.
Abdul-Majeed
,
G. H.
,
1996
, “
Liquid Holdup in Horizontal Two-Phase Gas-Liquid Flow
,”
J. Pet. Sci. Eng.
,
15
(
2–4
), pp.
271
280
.
4.
Zhao
,
H. D.
,
Lee
,
K. C.
, and
Freeston
,
D. H.
,
2000
, “
Geothermal Two-Phase Flow in Horizontal Pipes
,”
World Geothermal Congress
, Tokyo, Japan, May 28–June 10, pp. 3349–3353.
5.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
,
1970
, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
.
6.
Hughmark
,
G. A.
,
1962
, “
Holdup in Gas Liquid Flow
,”
Chem. Eng. Prog.
,
58
(4), pp.
62
64
.
7.
Gomez
,
L. E.
,
Shoham
,
O.
, and
Taitel
,
Y.
,
2000
, “
Prediction of Slug Liquid Holdup: Horizontal to Upward Vertical Flow
,”
Int. J. Multiphase Flow
,
26
(
3
), pp.
517
521
.
8.
Beggs
,
H. D.
, and
Brill
,
J. P.
,
1973
, “
A Study of Two-Phase Flow in Inclined Pipes
,”
J. Pet. Technol.
,
25
(
5
), pp.
607
617
.
9.
Mukherjee
,
H.
, and
Brill
,
J. P.
,
1983
, “
Liquid Holdup Correlations for Inclined Two-Phase Flow
,”
J. Pet. Technol.
,
35
(
5
), pp.
1003
1008
.
10.
Duns
,
H. J.
, and
Ros
,
N.
,
1963
, “
Vertical Flow of Gas and Liquid Mixtures in Wells
,”
Sixth World Petroleum Congress
, Frankfurt am Main, Germany, June 19–26, pp.
451
465
.
11.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas–Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.
12.
Ansari
,
A. M.
,
Sylvester
,
N. D.
,
Sarica
,
C.
,
Shoham
,
O.
, and
Brill
,
J. P.
,
1994
, “
A Comprehensive Mechanistic Model for Upward Two-Phase Flow in Wellbores
,”
SPE Prod. Facil.
,
9
(
2
), pp.
143
151
.
13.
Taitel
,
Y.
,
Bornea
,
D.
, and
Dukler
,
A.
,
1980
, “
Modelling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes
,”
AIChE J.
,
26
(
3
), pp.
345
354
.
14.
Petalas
,
N.
, and
Aziz
,
K.
,
2000
, “
A Mechanistic Model for Multiphase Flow in Pipes
,”
J. Can. Pet. Technol.
,
39
(
6
), pp.
43
55
.
15.
Kazi
,
S. N.
,
1999
,
An Overview of Heat Transfer Phenomena
,
InTech
, London.
16.
Awad
,
M. M.
, and
Muzychka
,
Y. S.
,
2008
, “
Effective Property Models for Homogeneous Two-Phase Flows
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
106
113
.
17.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog. Symp. Ser.
,
45
(
1
), pp.
39
48
.
18.
Zivi
,
S. M.
,
1964
, “
Estimation of Steady-State Void Fraction by Means of the Principle of Minimum Energy Production
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
247
252
.
19.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
.
20.
Franca
,
F.
, and
Lahey
,
R. T.
,
1992
, “
The Use of Drift-Flux Techniques for the Analysis of Horizontal Two-Phase Flows
,”
Int. J. Multiphase Flow
,
18
(
6
), pp.
787
801
.
21.
Shi
,
H.
,
Holmes
,
J.
,
Diaz
,
L.
,
Durlofsky
,
L.
, and
Aziz
,
K.
,
2005
, “
Drift-Flux Modeling of Two-Phase Flow in Wellbores
,”
SPE J.
,
10
(
1
), pp.
24
33
.
22.
Hasan
,
A. R.
,
Kabir
,
C. S.
, and
Sayarpour
,
M.
,
2007
, “
A Basic Approach to Wellbore Two-Phase Flow Modeling
,”
SPE Annual Technical Conference and Exhibition
, Anaheim, CA, Nov. 11–14,
SPE
Paper No. SPE-109868-MS.
23.
Mishima
,
K.
, and
Ishii
,
M.
,
1984
, “
Flow Regime Transition Criteria for Upward Two-Phase Flow in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
(5), pp.
723
737
.
24.
Ishii
,
M.
,
1987
, “
Two-Fluid Model for Two-Phase Flow
,”
Multiphase Sci. Technol.
,
5
(
1
), pp.
1
63
.
25.
De Sampaio
,
P. A. B.
,
Faccini
,
J. L. H.
, and
Su
,
J.
,
2008
, “
Modelling of Stratified Gas–Liquid Two-Phase Flow in Horizontal Circular Pipes
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
2752
2761
.
26.
Taha
,
T.
, and
Cui
,
Z. F.
,
2006
, “
CFD Modelling of Slug Flow in Vertical Tubes
,”
Chem. Eng. Sci.
,
61
(
2
), pp.
676
687
.
27.
Liu
,
Y.
,
Cui
,
J.
, and
Li
,
W. Z.
,
2011
, “
A Two-Phase, Two-Component Model for Vertical Upward Gas–Liquid Annular Flow
,”
Int. J. Heat Fluid Flow
,
32
(
4
), pp.
796
804
.
28.
Shuard
,
A. M.
,
Mahmud
,
H. B.
, and
King
,
A. J.
,
2016
, “
Comparison of Two-Phase Pipe Flow in OpenFOAM With a Mechanistic Model
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
121
(Conf. 1), p.
012018
.
29.
Shippen
,
M. E.
, and
Scott
,
S. L.
,
2004
, “
A Neural Network Model for Prediction of Liquid Holdup in Two-Phase Horizontal Flow
,”
SPE Prod. Facil.
,
19
(
2
), pp.
67
76
.
30.
El-Sayed
,
A. O.
,
2004
, “
Artificial Neural Network Models for Identifying Flow Regimes and Predicting Liquid Holdup in Horizontal Multiphase Flow
,”
SPE Prod. Facil.
,
19
(
1
), pp.
33
40
.
31.
Park
,
H. J.
, and
Kang
,
J. M.
,
2006
, “
Polynomial Neural Network Approach for Prediction of Liquid Holdup in Horizontal Two-Phase Flow
,”
Energy Sources, Part A
,
28
(
9
), pp.
845
853
.
32.
Meribout
,
M.
,
Al-Rawahi
,
N. Z.
,
Al-Naamany
,
A. M.
,
Al-Bimani
,
A.
,
Al-Busaidi
,
K.
, and
Meribout
,
A.
,
2010
, “
A Multisensory Intelligent Device for Real-Time Multiphase Flow Metering in Oil Fields
,”
IEEE Trans. Instrum. Meas.
,
59
(
6
), pp.
1507
1519
.
33.
Ozbayoglu
,
A. M.
, and
Yuksel
,
H. E.
,
2011
, “
Estimation of Multiphase Flow Properties Using Computational Intelligence Models
,”
Procedia Comput. Sci.
,
6
, pp.
493
498
.
34.
Ling
,
J.
,
Kurzawski
,
A.
, and
Templeton
,
J.
,
2016
, “
Reynolds Averaged Turbulence Modelling Using Deep Neural Networks With Embedded Invariance
,”
J. Fluid Mech.
,
807
, pp.
155
166
.
35.
Kutz
,
J. N.
,
2017
, “
Deep Learning in Fluid Dynamics
,”
J. Fluid Mech.
,
814
, pp.
1
4
.
36.
Mohammadi
,
M.
,
2006
, “
A Comprehensive Neural Network Model for Predicting Two-Phase Liquid Holdup Under Various Angles of Pipe Inclinations
,”
Canadian International Petroleum Conference
, Calgary, AB, Canada, June 13–15, Paper No.
PETSOC-2006-048
.
37.
Liao
,
K.
,
Yao
,
Q.
,
Wu
,
X.
, and
Jia
,
W.
,
2012
, “
A Numerical Corrosion Rate Prediction Method for Direct Assessment of Wet Gas Gathering Pipelines Internal Corrosion
,”
Energies
,
5
(
10
), pp.
3892
3907
.
38.
Zhang
,
D.
, and
Xia
,
B.
,
2014
, “
Soft Measurement of Water Content in Oil-Water Two-Phase Flow Based on RS-SVM Classifier and GA-NN Predictor
,”
Meas. Sci. Rev.
,
14
(
4
), pp.
219
226
.
39.
Porto
,
M. P.
,
Pedro
,
H. T. C.
,
Machado
,
L.
,
Koury
,
R. N. N.
,
Lima
,
C. U. S.
, and
Coimbra
,
C. F. M.
,
2014
, “
Genetic Optimization of Heat Transfer Correlations for Evaporator Tube Flows
,”
Int. J. Heat Mass Transfer
,
70
, pp.
330
339
.
40.
Hassoun
,
M. H.
,
1995
,
Fundamentals of Artificial Neural Networks
,
MIT Press
,
Cambridge, MA
, Chap. 5.
41.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1990
, “
Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks
,”
Neural Networks
,
3
(
5
), pp.
551
560
.
42.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
43.
Blickle
,
T.
, and
Thiele
,
L.
,
1995
, “
A Comparison of Selection Schemes Used in Genetic Algorithms
,” Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zürich, Switzerland, Technical Report No.
11
.
44.
De Jong
,
K. A.
,
1976
, “Analysis of the Behavior of a Class of Genetic Adaptive Systems,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.
45.
Hong
,
T. P.
,
Wang
,
H. S.
,
Lin
,
W. Y.
, and
Lee
,
W. Y.
,
2002
, “
Evolution of Appropriate Crossover and Mutation Operators in a Genetic Process
,”
Appl. Intell.
,
16
(1), pp.
7
17
.
46.
Lin
,
W. Y.
,
Lee
,
W. Y.
, and
Hong
,
T. P.
,
2003
, “
Adapting Crossover and Mutation Rates in Genetic Algorithms
,”
J. Inf. Sci. Eng.
,
19
, pp.
889
903
.
47.
Alves
,
G. E.
,
1954
, “
Co-Current Liquid-Gas Flow in a Pipeline Contractor
,”
Chem. Eng. Prog.
,
50
(9), pp.
449
456
.
48.
Green
,
D. W.
,
1959
, M.Sc. thesis, University of Oklahoma, Norman, OK.
49.
Govier
,
G. W.
,
Radford
,
B. A.
, and
Dunn
,
J. S. C.
,
1957
, “
The Upwards Vertical Flow of Air-Water Mixtures—I: Effect of Air and Water Rates on Flow Pattern, Holdup and Pressure Drop
,”
Can. J. Chem. Eng.
,
35
, pp.
58
70
.
50.
Govier
,
G. W.
, and
Omer
,
M. M.
,
1962
, “
The Horizontal Pipeline Flow of Air–Water Mixtures
,”
Can. J. Chem. Eng.
,
40
(
3
), pp.
93
104
.
51.
Agrawal
,
S. S.
,
1971
, “Horizontal Two-Phase Stratified Flow in Pipes,” M.Sc. thesis, University of Calgary, Calgary, AB, Canada.
52.
Yu
,
C.
,
1972
, “Horizontal Flow of Air-Oil Mixtures in the Elongated Bubble Flow Pattern,” M.Sc. thesis, University of Calgary, Calgary, AB, Canada.
53.
Eaton
,
B. A.
,
1966
, “The Prediction of Flow Patterns, Liquid Holdup and Pressure Losses,”
Ph.D. thesis
, University of Texas, Austin, TX.
54.
Vermeulen
,
L. R.
,
1968
, “Two-Phase Slug Flow in Horizontal and Inclined Tubes,” M.Sc. thesis, University of Alberta, Edmonton, AB, Canada.
55.
Mattar
,
L.
,
1973
, “Slug Flow Uphill in an Inclined Pipe,” M.Sc. thesis, University of Calgary, Calgary, AB, Canada.
56.
Griffith
,
P.
,
Lau
,
C. W.
,
Hon
,
P. C.
, and
Pearson
,
J. F.
,
1973
, “Two Phase Pressure Drop in Inclined and Vertical Pipes,” Massachusetts Institute of Technology, Cambridge, MA, Technical Report No.
DSR 80063-81
.
57.
Nicholson
,
M. K.
,
Aziz
,
K.
, and
Gregory
,
G. A.
,
1978
, “
Intermittent Two Phase Flow in Horizontal Pipes: Predictive Models
,”
Can. J. Chem. Eng.
,
56
(
6
), pp.
653
663
.
58.
Mukherjee
,
H.
,
1979
, “An Experimental Study of Inclined Two-Phase Flow,” Ph.D. thesis, University of Tulsa, Tulsa, OK.
59.
Nguyen
,
V. T.
,
1975
, “Two Phase Gas–Liquid Co-Current Flow. An Investigation of Holdup, Pressure Drop and Flow Pattern in a Pipe at Various Inclinations,” Ph.D. thesis, University of Auckland, Auckland, New Zealand.
60.
Gregory
,
G. A.
,
Nicholson
,
M. K.
, and
Aziz
,
K.
,
1978
, “
Correlation of the Liquid Volume Fraction in the Slug for Horizontal Gas-Liquid Slug Flow
,”
Int. J. Multiphase Flow
,
4
(1), pp.
33
39
.
61.
Chaari
,
M.
,
Fekih
,
A.
, and
Seibi
,
A. C.
,
2018
, “
A Frequency Domain Approach to Improve ANNs Generalization Quality Via Proper Initialization
,”
Neural Networks
(in press).
62.
Maren
,
A. J.
,
Harston
,
C. T.
, and
Pap
,
R. M.
,
1990
,
Handbook of Neural Computing Applications
,
Academic Press
,
San Diego, CA
, Chap. 15.
63.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feedforward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Networks
,
5
(
6
), pp.
989
993
.
64.
Chaari
,
M.
,
Ben Hmida
,
J.
,
Seibi
,
A. C.
, and
Fekih
,
A.
,
2017
, “
Steady-State Pressure Drop for Two-Phase Flow in Pipelines: An Integrated Genetic Algorithm–Artificial Neural Network Approach
,”
ASME
Paper No. IMECE2017-71854.
65.
Bäck
,
T.
, and
Hoffmeister
,
F.
,
1991
, “
Extended Selection Mechanisms in Genetic Algorithms
,”
Fourth International Conference on Genetic Algorithms
, San Diego, July 13–16, pp.
92
99
.
66.
Kumar
,
R.
, and
Jyotishree
,
2012
, “
Effect of Annealing Selection Operators in Genetic Algorithms on Benchmark Test Functions
,”
Int. J. Comput. Appl.
,
40
(
3
), pp.
38
46
.
67.
Krogh
,
A.
, and
Hertz
,
J. A.
,
1991
, “
A Simple Weight Decay Can Improve Generalization
,”
Advances in Neural Information Processing Systems,
Vol.
4
, Morgan Kaumann Publishers, San Mateo CA, pp.
950
957.
68.
Meziou
,
A.
,
Chaari
,
M.
,
Franchek
,
M.
,
Borji
,
R.
,
Grigoriadis
,
K.
, and
Tafreshi
,
R.
,
2016
, “
Low-Dimensional Modeling of Transient Two-Phase Flow in Pipelines
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
10
), p. 101008.
You do not currently have access to this content.