The conveying stability of the powder propellant is significant for the feeding-system design and particle-combustion performance of powder engines. In this study, a nozzle structure was employed to increase the conveying stability in a pipeline. The gas–solid flow through the nozzle was visualized, and the pressure signals were analyzed using multiscale methods: the standard deviation, wavelet transform, and higher order statistics. The nozzle structure helped to reorganize the downstream gas–solid by accelerating the gas–solid two-phase flow. The results for the standard deviation indicated that the upstream was more stable and less affected by the downstream at higher fluidized pressures. Through wavelet analysis, the energy fraction of the frequency band was used to represent the gas–solid characteristics, and the particle collision and nonlinear drag of the gas–solid interaction represented by the low-frequency band were determined to be the main factors affecting the downstream stability. Additionally, a high fluidized pressure (>2 MPa) yielded a relatively stable downstream flow. The higher order statistics method provided a better result than the standard deviation because of its high resolution and strong noise suppression. The analysis results indicate that increasing the particle size enhances the downstream stability.

References

1.
Li
,
Y.
,
Hu
,
C. B.
,
Deng
,
Z.
,
Li
,
C.
,
Sun
,
H. J.
, and
Cai
,
Y. P.
,
2017
, “
Experimental Study on Multiple-Pulse Performance Characteristics of Ammonium Perchlorate/Aluminum Powder Rocket Motor
,”
Acta Astronaut.
,
133
, pp.
455
466
.
2.
Li
,
C.
,
Hu
,
C. B.
,
Xin
,
X.
,
Li
,
Y.
, and
Sun
,
H. J.
,
2016
, “
Experimental Study on the Operation Characteristics of Aluminum Powder Fueled Ramjet
,”
Acta Astronaut.
,
129
, pp.
74
81
.
3.
Shafirovich
,
E.
, and
Varma
,
A.
,
2008
, “
Metal-CO2 Propulsion for Mars Missions: Current Status and Opportunities
,”
J. Propul. Power
,
24
(
3
), pp.
385
394
.
4.
Huang
,
W. J.
,
Gong
,
X.
,
Guo
,
X. L.
,
Dai
,
Z. H.
,
Liu
,
H. F.
,
Cao
,
Z. W.
, and
Wang
,
C. H.
,
2009
, “
Study of the Pressure Drop of Dense Phase Gas-Solid Flow Through Nozzle
,”
Powder Technol.
,
189
(
1
), pp.
82
86
.
5.
Sun
,
H. J.
,
Hu
,
C. B.
,
Zhang
,
T.
, and
Deng
,
Z.
,
2016
, “
Experimental Investigation on Mass Flow Rate Measurements and Feeding Characteristics of Powder at High Pressure
,”
Appl. Therm. Eng.
,
102
, pp.
30
37
.
6.
Sun
,
H. J.
,
Hu
,
C. B.
,
Zhu
,
X. F.
, and
Yang
,
J. G.
,
2017
, “
Experimental Investigation on Incipient Mass Flow Rate of Micro Aluminum Powder at High Pressure
,”
Exp. Therm. Fluid Sci.
,
83
, pp.
231
238
.
7.
Wang
,
X. M.
,
Li
,
Q.
,
Zou
,
Z. S.
, and
Shen
,
F. M.
,
2005
, “
Experimental Study on Choking Phenomenon of Gas-Powder Flow
,”
Chin. J. Process Eng.
,
5
, pp.
591
596
.http://en.cnki.com.cn/Article_en/CJFDTotal-HGYJ200506001.htm
8.
Anand
,
R. K.
,
2014
, “
On Dynamics of Imploding Shock Waves in a Mixture of Gas and Dust Particles
,”
Int. J. Nonlinear Mech.
,
65
, pp.
88
97
.
9.
Zhao
,
L.
,
Gao
,
L.
,
Chen
,
Q.
,
Gao
,
H.
, and
Zeng
,
D.
,
2005
, “
Shock Wave of Gas-Solid Flow Considering the Two-Phase Sound Velocity
,” ASME Paper No. IMECE2005-80528.
10.
Lu
,
H. F.
,
Guo
,
X. L.
,
Huang
,
W. J.
,
Liu
,
K.
, and
Gong
,
X.
,
2011
, “
Flow Characteristics and Pressure Drop Across the Laval Nozzle in Dense Phase Pneumatic Conveying of the Pulverized Coal
,”
Chem. Eng. Process.
,
50
(
7
), pp.
702
708
.
11.
Giddings
,
D.
,
Azzopardi
,
B. J.
,
Aroussi
,
A.
, and
Pickering
,
S. J.
,
2011
, “
Optical Investigation of a Long Throated Venturi Conveying Inert Spherical Particulate With Size Range Similar to Pulverised Coal
,”
Powder Technol.
,
207
(
1–3
), pp.
370
377
.
12.
Bai
,
D.
,
Shibuya
,
E.
,
Nakagawa
,
N.
, and
Kato
,
K.
,
1996
, “
Characterization of Gas Fluidization Regimes Using Pressure Fluctuation
,”
Powder Technol.
,
87
(
2
), pp.
105
111
.
13.
Lu
,
P.
,
Li
,
W.
,
Zheng
,
X. W.
,
Chen
,
X. P.
, and
Zhao
,
C. S.
,
2016
, “
Experimental Research and HHT Analysis on the Flow Characteristics of Pneumatic Conveying Under High Pressure
,”
Appl. Therm. Eng.
,
108
, pp.
502
507
.
14.
Jaiboon
,
O. A.
,
Chalermsinsuwan
,
B.
,
Mekasut
,
L.
, and
Piumsomboon
,
P.
,
2013
, “
Effect of Flow Pattern on Power Spectral Density of Pressure Fluctuation in Various Fluidization Regimes
,”
Powder Technol.
,
233
, pp.
215
226
.
15.
Pahk
,
J. B.
, and
Klinzing
,
G. E.
,
2008
, “
Assessing Flow Regimes From Pressure Fluctuations in Pneumatic Conveying of Polymer Pellets
,”
Part. Sci. Technol.
,
26
(
3
), pp.
247
256
.
16.
Kulkarni
,
A. A.
,
Joshi
,
J. B.
,
Kumar
,
V. R.
, and
Kulkarni
,
B. D.
,
2001
, “
Identification of the Principal Time Scales in Bubble Column by Wavelet Analysis
,”
Chem. Eng. Sci.
,
56
(
20
), pp.
5739
5747
.
17.
Van Ommen
,
J. R.
,
Sasic
,
S.
,
Van der Schaaf
,
J.
,
Gheorghiu
,
S.
,
Johnsson
,
F.
, and
Coppens
,
M. O.
,
2011
, “
Time-Series Analysis of Pressure Fluctuations in Gas–Solid Fluidized Beds—A Review
,”
Int. J. Multiphase Flow
,
37
(
5
), pp.
403
428
.
18.
Cai
,
L.
,
Pan
,
X.
,
Chen
,
X.
, and
Zhao
,
C.
,
2012
, “
Flow Characteristics and Stability of Dense-Phase Pneumatic Conveying of Pulverized Coal Under High Pressure
,”
Exp. Therm. Fluid Sci.
,
41
, pp.
149
157
.
19.
Alameda-Hernández
,
E.
,
Montoya
,
F. G.
,
Mercado-Vargas
,
M. J.
,
Botella
,
G.
, and
Manzano-Agugliaro
,
F.
,
2016
, “
Higher-Order Statistics for Power Systems: Effects of the Sampling Frequency on Ergodicity
,”
Appl. Math. Modell.
,
40
(
15–16
), pp.
6924
6933
.
20.
Zhao
,
M. Y.
,
Huang
,
Z. Y.
,
Wang
,
B. L.
, and
Li
,
H. Q.
,
2002
, “
Applications of Higher-Order Statistics to the Study of Pressure Fluctuation Signal of Gas-Solid Fluidized Bed
,”
J. Zhejiang Univ.
,
36
(
6
), pp.
680
684
.http://en.cnki.com.cn/Article_en/CJFDTotal-ZDZC200206018.htm
21.
Wang
,
J.
,
Zhong
,
W.
, and
Zhang
,
H.
,
2017
, “
Characterization of Flow Regimes in Fluidized Beds by Information Entropy Analysis of Pressure Fluctuations
,”
Can. J. Chem. Eng.
,
95
(
3
), pp.
578
588
.
22.
Bartels
,
M.
,
Nijenhuis
,
J.
,
Kapteijn
,
F.
, and
Van Ommen
,
J. R.
,
2010
, “
Detection of Agglomeration and Gradual Particle Size Changes in Circulating Fluidized Beds
,”
Powder Technol.
,
202
(
1–3
), pp.
24
38
.
23.
Pahon
,
E.
,
Steiner
,
N. Y.
,
Jemei
,
S.
,
Hissel
,
D.
,
Péra
,
M. C.
,
Wang
,
K.
, and
Moçoteguy
,
P.
,
2016
, “
Solid Oxide Fuel Cell Fault Diagnosis and Ageing Estimation Based on Wavelet Transform Approach
,”
Int. J. Hydrogen Energy
,
41
(
31
), pp.
13678
13687
.
24.
Nguyen
,
V. T.
,
Euh
,
D. J.
, and
Song
,
C. H.
,
2010
, “
An Application of the Wavelet Analysis Technique for the Objective Discrimination of Two-Phase Flow Patterns
,”
Int. J. Multiphase Flow
,
36
(
9
), pp.
755
768
.
25.
Alamolhoda
,
F.
,
Zarghami
,
R.
,
Sotudeh-Gharebagh
,
R.
, and
Mostoufi
,
N.
,
2017
, “
Effect of Changes in Particle Size on the Hydrodynamics of Gas-Solid Fluidized Beds Through Wall Vibration
,”
Powder Technol.
,
307
, pp.
129
136
.
26.
Li
,
J.
, and
Kuipers
,
J. A. M.
,
2002
, “
Effect of Pressure on Gas–Solid Flow Behavior in Dense Gas-Fluidized Beds: A Discrete Particle Simulation Study
,”
Powder Technol.
,
127
(
2
), pp.
173
184
.
27.
Cong
,
X.
,
Guo
,
X.
,
Xin
,
G.
,
Lu
,
H.
, and
Dong
,
W. J.
,
2011
, “
Experimental Research of Flow Patterns and Pressure Signals in Horizontal Dense Phase Pneumatic Conveying of Pulverized Coal
,”
Powder Technol.
,
208
(
3
), pp.
600
609
.
28.
Dasani
,
D.
,
Cyrus
,
C.
,
Scanlon
,
K.
,
Du
,
R.
,
Rupp
,
K.
, and
Henthorn
,
K. H.
,
2009
, “
Effect of Particle and Fluid Properties on the Pickup Velocity of Fine Particles
,”
Powder Technol.
,
196
(
2
), pp.
237
240
.
You do not currently have access to this content.