Grid fins are unconventional control surfaces consisting of an outer frame supporting an inner grid of intersecting planar surfaces. Although afflicted with higher drag, these have been credited for their enhanced lifting characteristics at high angles of attack and high Mach numbers, alongside reduced hinge moments accounting for the recent upsurge in their usage on numerous aerospace applications. Present investigations carry out elaborate flow field visualization and characterization underlining the rudimentary physics through a sequence of subsonic numerical simulations performed at different angles of attack and different gap (between the members) to chord ratios on a simplified grid fin variant called cascade fin. The study makes use of a new nondimensionalization technique called cumulative nondimensionalization to decipher the effect of cascading on individual members of the fin. Hence, after a comprehensive examination of the aerodynamic coefficients, pressure coefficient distribution, pressure gradient, velocity gradient, boundary layer velocity profile, and flow field visualization, the study elucidates physics associated with hastened stall angle, augmented lift-drag, and bounded efficiency accretion for gap increment.

References

1.
Fulghum
,
D. A.
,
2003
, “
It is the Big One (MOAB Actually Fits in a B-2)
,”
Aviation Week & Space Technology
,
Aviation Week Network
,
New York
, pp.
33
34
.
2.
Savelsberg
,
R.
, and
Kiessling
,
J.
,
2016
, “
North Korea's Musudan Missile: A Performance Assessment
,” Stimson Centre, Washington, DC, accessed Mar. 2, 2019, http://38north.org/2016/12/musudan122016
3.
Pruzan
,
D.
,
Mendenhall
,
M.
,
Rose
,
W.
, and
Schuster
,
D.
,
2011
, “
Grid Fin Stabilization of the Orion Launch Abort Vehicle
,”
AIAA
Paper No. 2011-3018.
4.
Yakimenko
,
O. A.
,
Slegers
,
N. J.
,
Bourakov
,
E. A.
,
Hewgley
,
C. W.
,
Bordetsky
,
A. B.
,
Jensen
,
R. P.
,
Robinson
,
A. B.
,
Malone
,
J. R.
, and
Heidt
,
P. E.
,
2009
, “
Mobile System for Precise Aero Delivery With Global Reach Network Capability
,”
IEEE
International Conference on Control and Automation
, Christchurch, New Zealand, Dec. 9–11, pp.
1394
1398
.
5.
Official SpaceX Photos
,
2017
, “
Second-Generation Titanium Grid Fins, Iridium-2 mission
,” SpaceX, Hawthorne, CA, accessed Dec. 19, 2018, https://www.flickr.com/photos/130608600\@N05/35533873795
6.
SpaceX
,
2015
, “Falcon 9,” SpaceX, Hawthorne, CA, Mar. 2, 2019, http://www.spacex.com/falcon9
7.
Schülein
,
E.
, and
Guyot
,
D.
,
2006
, “
Novel High-Performance Grid Fins for Missile Control at High Speeds: Preliminary Numerical and Experimental Investigations
,”
Innovative Missile Systems, Meeting Proceedings
, Amsterdam, The Netherlands, May 15–18, Paper No.
RTO-MP-AVT-135
.https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/RTO-MP-AVT-135/MP-AVT-135-35.pdf
8.
Washington
,
W. D.
, and
Miller
,
M.
,
1993
, “
Grid Fins—A New Concept for Missile Stability and Control
,”
AIAA
Paper No. 93–0035.
9.
Washington
,
W. D.
, and
Miller
,
M. S.
,
1998
, “
Experimental Investigations of Grid Fin Aerodynamics: A Synopsis of Nine Wind Tunnel and Three Flight Tests
,”
RTO AVT Symposium on Missile Aerodynamics,
Sorento, Italy, May 11–14, Paper No. RTO-MP-5.
10.
DeSpirito
,
J. D.
,
Vaughn
,
M. E.
, and
Washington
,
W. D.
, 2002, “
CFD Investigation of Canard-Controlled Missile With Planar and Grid Fins in Supersonic Flow
,”
AIAA
Paper No. 2002-4509.
11.
Simpson
,
G.
, and
Sadler
,
A.
,
1998
, “
Lattice Controls: A Comparison With Conventional, Planar Fins
,”
RTO AVT Symposium on Missile Aerodynamics
, Sorento, Italy, May 11–14, Paper No. RTO-MP-5.
12.
Ledlow
,
T. I.
,
Burkhalter
,
J. E.
, and
Hartfield
,
R. J.
,
2015
, “
Integration of Grid Fins for the Optimal Design of Missile Systems
,”
AIAA
Paper No. 2015-1017.
13.
Fleeman
,
E. L.
,
2006
,
Tactical Missile Design
(AIAA Education Series), 1st ed.,
AIAA
,
Reston, VA
, pp.
40
42
.
14.
Miller
,
M. S.
, and
Washington
,
W. D.
,
1994
, “
An Experimental Investigation of Grid Fin Drag Reduction Techniques
,”
AIAA
Paper No. 94-1914-CP.
15.
Zeng
,
Y.
,
Cai
,
J.
,
Debiasi
,
M.
, and
Chng
,
T. L.
,
2009
, “
Numerical Study on Drag Reduction for Grid-Fin Configurations
,”
AIAA
Paper No. 2009-1105.
16.
Zeng
,
Y.
,
2012
, “
Drag Reduction for Sweptback Grid Fin With Blunt and Sharp Leading Edges
,”
J. Aircr.
,
49
(
5
), pp.
1526
1531
.
17.
Belotserkovskiy
,
S.
,
Odnovol
,
L.
,
Safin
,
Y. Z.
,
Tyulenev
,
A.
,
Frolov
,
V.
, and
Shitov
,
V.
,
1985
,
Keshetechatye Krylaya (Lattice Wings)
, Mashinostronie, Moscow, Russia, pp.
10
96
(in Russian).
18.
Brooks
,
R. A.
, and
Burkhalter
,
J. E.
,
1989
, “
Experimental and Analytical Analysis of Grid Fin Configurations
,”
J. Aircr.
,
26
(
9
), pp.
885
887
.
19.
Burkhalter
,
J. E.
,
Hartfoeld
,
R. J.
, and
Leleux
,
T. M.
,
1995
, “
Nonlinear Aerodynamic Analysis of Grid Fin Configurations
,”
J. Aircr.
,
32
(
3
), pp.
547
554
.
20.
Washington
,
W. D.
,
Booth
,
P.
, and
Miller
,
M.
,
1993
, “
Curvature and Leading Edge Sweep Back Effects on Grid Fin Aerodynamic Characteristics
,”
AIAA
Paper No. 93-3480-CP.
21.
Abate
,
G.
,
Winchenbach
,
G.
, and
Hathaway
,
W.
,
2001
, “
Transonic Aerodynamic and Scaling Issues for Lattice Fin Projectiles Tested in a Ballistics Range
,”
19th International Symposium of Ballistics
, Thun, Switzerland, May 7–11, pp.
413
420
.http://xrayct.com/documents/data/IBS19/EB01_413.pdf
22.
Fournier
,
E. Y.
,
2001
, “
Wind Tunnel Investigation of a High l/d Projectile With Grid Fin and Conventional Planar Control Surfaces
,”
19th International Symposium of Ballistics
, Thun, Switzerland, May 7–11, pp.
511
520
.http://www.xrayct.com/documents/data/IBS19/EB13_511.pdf
23.
Palaszewski
,
B.
, and
Field
,
L.
,
2012
, “
Entry, Descent, and Landing With Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing
,”
AIAA
Paper No. 2013-0027.
24.
Berner
,
C.
, and
Dupuis
,
A.
,
2001
, “
Wind Tunnel Tests of a Grid Finned Projectile Configuration
,”
AIAA
Paper No. 2001–105.
25.
Sun
,
Y.
, and
Khalid
,
M.
,
1998
, “
A CFD Investigation of Grid Fin Missiles
,”
AIAA
Paper No. 1998-3571.
26.
DeSpirito
,
J.
,
Washington
,
W. D.
, and
Vaughn
,
M. E.
, Jr.
,
2004
, “
Numerical Investigation of Aerodynamics of Canard-Controlled Missile Using Planar and Grid Tail Fins—Part II: Subsonic and Transonic Flow
,” U.S. Army Research Lab, Aberdeen Proving Ground, MD, Report No.
TR-3162
.https://apps.dtic.mil/dtic/tr/fulltext/u2/a422334.pdf
27.
Dan
,
W.
, and
Yong
,
Y.
,
2014
, “
Numerical Study on Drag Reduction for Swept-Back, Swept-Front, Delta Grid Fin With Blunt and Sharp Leading Edges
,”
AIAA
Paper No. 2014-0638.
28.
Spirito
,
J. D.
,
Vaughn
,
M. E.
, and
Washington
,
W. D.
,
2003
, “
Numerical Investigation of Canard-Controlled Missile With Planar and Grid Fins
,”
J. Spacecr. Rockets
,
40
(
3
), pp.
363
370
.
29.
Pin
,
W.
,
Yong-gang
,
M.
, and
Chun
,
C.
,
2005
, “
The Research Analysis of Aerodynamic Numerical Simulation of Grid Fin
,”
J. Zhejiang Univ.- Sci. A
,
6
(
7
), pp.
741
746
.
30.
Cai
,
J.
,
2009
, “
Numerical Study on Choked Flow Over Grid-Fin Configurations
,”
J. Spacecr. Rockets
,
46
(
5
), pp.
949
956
.
31.
Despeyroux
,
A.
,
Hickey
,
J.-P.
,
Desaulnier
,
R.
,
Luciano
,
R.
,
Piotrowski
,
M.
, and
Hamel
,
N.
,
2015
, “
Numerical Analysis of Static and Dynamic Performances of Grid Fin Controlled Missiles
,”
J. Spacecr. Rockets
,
52
(
4
), pp.
1236
1252
.
32.
Chen
,
S.
,
Khalid
,
M.
,
Xu
,
H.
, and
Lesage
,
F.
,
2000
, “
A Comprehensive CFD Investigation of Grid Fins as Efficient Control Surface Devices
,”
AIAA
Paper No. 2000-987.
33.
Debiasi
,
M.
,
Yan
,
Z.
, and
Chng
,
T. L.
,
2010
, “
Swept-Back Grid Fins for Transonic Drag Reduction
,”
AIAA
Paper No. 2010-4244.
34.
Horlock
,
J.
,
Louis
,
J.
,
Percival
,
P.
, and
Lakshminarayana
,
B.
,
1966
, “
Wall Stall in Compressor Cascades
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
637
648
.
35.
Wang
,
H.-P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
36.
Hu
,
R.
,
Jameson
,
A.
, and
Wang
,
Q.
,
2012
, “
Adjoint-Based Aerodynamic Optimization of Supersonic Biplane Airfoils
,”
J. Aircr.
,
49
(
3
), pp.
802
814
.
37.
Kusunose
,
K.
,
Matsushima
,
K.
, and
Maruyama
,
D.
,
2011
, “
Supersonic Biplane—A Review
,”
Prog. Aerosp. Sci.
,
47
(
1
), pp.
53
87
.
38.
Misra
,
A.
,
Ghosh
,
A.
, and
Ghosh
,
K.
,
2008
, “
Cascade Fins—An Alternate Tail Stabilization Unit
,”
AIAA
Paper No. 2008–6884.
39.
Tripathi
,
M.
,
Misra
,
A.
, and
M. Sucheendran
,
M.
,
2018
, “
Numerical Simulations of High Angle of Attack Subsonic Flow Past Cascade Fin for Varying Number of Planar Members
,”
FELIP Int. J. Eng. Anal. Simul. Addit. Manuf. (IJEASAM)
,
1
(
1
), pp.
21
32
.http://journalfelip.org/wp-content/uploads/2018/09/Chapter-3.pdf
40.
Tripathi
,
M.
,
Mahesh
,
M. S.
, and
Misra
,
A.
,
2018
, “
High Angle of Attack Analysis of Cascade Fin in Subsonic Flow
,”
International Conference on Modern Research in Aerospace Engineering
, Singapore, Sept. 22–23, pp.
121
131
.
41.
Misra
,
A.
,
2009
, “
Investigation of Grid and Cascade Fins for Missile Flight Stabilization
,” Ph.D. thesis, Indian Institute of Technology, Kanpur, Uttar Pradesh, India.
42.
Kumar
,
R.
,
Mishra
,
A.
, and
Ghosh
,
A. K.
,
2012
, “
Nonlinear Modeling of Cascade Fin Aerodynamics Using Kirchhoff's Steady-State Stall Model
,”
J. Aircr.
,
49
(
1
), pp.
315
319
.
43.
NWTF Faculty & Management
,
2018
, “
National Wind Tunnel Facility IIT Kanpur
,” Indian Institute of Technology Kanpur, Kanpur, India, accessed Sept. 25, 2018, http://www.iitk.ac.in/dord/data/Facilities/NWTF.pdf
44.
Metacomp Technologies
,
2017
, “
MIME User Manual
,” Metacomp Technologies, Agoura Hills, CA.
45.
Chakravarthy
,
S.
,
1999
, “
A Unified-Grid Finite Volume Formulation for Computational Fluid Dynamics
,”
Int. J. Numer. Methods Fluids
,
31
(
1
), pp.
309
323
.
46.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 1992-439.
47.
Metacomp Technologies
,
2017
, “
Accurate CFD for all Regimes
,” Metacomp Technologies, Agoura Hills, CA, accessed Nov. 6, 2017, http://www.metacomptech.com/index.php/features/icfd
48.
Salim
,
S. M.
, and
Cheah
,
S.
,
2009
, “
Wall y+ Strategy for Dealing With Wall-Bounded Turbulent Flows
,”
International Multiconference of Engineers and Computer Scientists
, Hong Kong, China Mar. 18–20, pp.
2165
2170
.https://www.researchgate.net/publication/209105574_Wall_y_Strategy_for_Dealing_with_Wall-bounded_Turbulent_Flows
49.
Ariff
,
M.
,
Salim
,
S. M.
, and
Cheah
,
S. C.
,
2009
, “
Wall y+ Approach for Dealing With Turbulent Flow Over a Surface Mounted Cube: Part 1–Low Reynolds Number
,”
Seventh International Conference on CFD in the Minerals and Process Industries
, Melborne, Australia, Dec. 9–11, pp.
1
6
.https://www.researchgate.net/publication/209105898_Wall_y_Approach_for_Dealing_with_Turbulent_Flows_over_a_Surface_Mounted_Cube_Part_2_-_High_Reynolds_Number
50.
Kuya
,
Y.
,
Takeda
,
K.
, and
Zhang
,
X.
,
2010
, “
Computational Investigation of a Race Car Wing With Vortex Generators in Ground Effect
,”
ASME J. Fluids Eng.
,
132
(
2
), p.
021102
.
51.
Cai
,
C.
,
Zuo
,
Z.
,
Liu
,
S.
, and
Maeda
,
T.
,
2018
, “
Effect of a Single Leading-Edge Protuberance on NACA 634-021 Airfoil Performance
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021108
.
52.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
53.
Slater
,
J. W.
,
2008
, “
Examining Spatial (Grid) Convergence
,” NPARC Alliance CFD Verification and Validation Website, National Aeronautics and Space Administration, Washington, DC, accessed Dec. 19, 2018, https://www.grc.nasa.gov/www/wind/valid/tutorial/spatconv.html
54.
Schwer
,
L. E.
,
2008
, “
Is Your Mesh Refined Enough? Estimating Discretization Error Using GCI
,” Seventh German LS-DYNA Forum, Bamberg, Germany, Sept. 30–Oct. 1, pp.
1–1–45
1–1–54
.
55.
Zhou
,
Y.
, and
Wang
,
Z.
,
2012
, “
Effects of Surface Roughness on Separated and Transitional Flows Over a Wing
,”
AIAA J.
,
50
(
3
), pp.
593
609
.
56.
Tripathi
,
M.
,
Misra
,
A.
, and
Sucheendran
,
M.
,
2018
, “
Effect of Planar Member Cross-Section on Cascade Fin Aerodynamics
,”
J. Spacecr. Rockets
(in press).
57.
Tadjfar
,
M.
, and
Asgari
,
E.
,
2018
, “
Active Flow Control of Dynamic Stall by Means of Continuous Jet Flow at Reynolds Number of 1 × 106
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011107
.
You do not currently have access to this content.