Abstract

Water droplet impacting onto a hydrophobic surface is considered and the influence of the surface wetting state on the droplet dynamics is examined. Pressure variation in the impacting droplet is predicted numerically using the level set model. The droplet spreading and the retraction on the hydrophobic surface are assessed for various wetting states of the hydrophobic surface. Experiment is carried out to validate the predictions of the droplet shape and the restitution coefficient. It is found that predictions of impacting droplet shape and the restitution coefficient agree with those obtained from the experiment. The local pressure peaks formed in the droplet fluid, particularly in the retraction period, causes alteration of the droplet vertical height and the shape. Droplet spreading is influenced by the wetting state of the hydrophobic surface; hence, increasing contact angle of the hydrophobic surface lowers the spreading diameter of the droplet on the surface. The transition time of the droplet changes with the wetting state of the hydrophobic surface such that increasing droplet contact angle reduces the transition time of the droplet on the surface. The droplet remains almost round after the first bounding for large contact angle hydrophobic surface.

References

1.
Hassan
,
G.
,
Yilbas
,
B. S.
,
Al-Sharafi
,
A.
, and
Al-Qahtani
,
H.
,
2019
, “
Self-Cleaning of a Hydrophobic Surface by a Rolling Water Droplet
,”
Sci. Rep.
,
9
(
1
), p.
5744
.10.1038/s41598-019-42318-3
2.
Patil
,
N. D.
,
Bhardwaj
,
R.
, and
Sharma
,
A.
,
2016
, “
Droplet Impact Dynamics on Micropillared Hydrophobic Surfaces
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
195
206
.10.1016/j.expthermflusci.2015.12.006
3.
Li
,
X.
,
Ma
,
X.
, and
Lan
,
Z.
,
2010
, “
Dynamic Behavior of the Water Droplet Impact on a Textured Hydrophobic/Superhydrophobic Surface: The Effect of the Remaining Liquid Film Arising on the Pillars' Tops on the Contact Time
,”
Langmuir
,
26
(
7
), pp.
4831
4838
.10.1021/la903603z
4.
Diaz
,
A. J.
, and
Ortega
,
A.
,
2016
, “
Gas-Assisted Droplet Impact on a Solid Surface
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081104
.10.1115/1.4033025
5.
Li
,
Z.
,
Kong
,
Q.
,
Ma
,
X.
,
Zang
,
D.
,
Guan
,
X.
, and
Ren
,
X.
,
2017
, “
Dynamic Effects and Adhesion of Water Droplet Impact on Hydrophobic Surfaces: Bouncing or Sticking
,”
Nanoscale
,
9
(
24
), pp.
8249
8255
.10.1039/C7NR02906C
6.
Weisensee
,
P. B.
,
Tian
,
J.
,
Miljkovic
,
N.
, and
King
,
W. P.
,
2016
, “
Water Droplet Impact on Elastic Superhydrophobic Surfaces
,”
Sci. Rep.
,
6
, p.
30328
.10.1038/srep30328
7.
Chakaneh
,
J. Z.
,
Pishbin
,
S. J.
,
Lotfabadi
,
A. S.
, and
Passandideh-Fard
,
M.
,
2019
, “
Experimental and Numerical Characterization of Drop Impact on a Hydrophobic Cylinder
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081112
.10.1115/1.4042666
8.
Lunkad
,
S. F.
,
Buwa
,
V. V.
, and
Nigam
,
K. D. P.
,
2007
, “
Numerical Simulations of Drop Impact and Spreading on Horizontal and Inclined Surfaces
,”
Chem. Eng. Sci.
,
62
(
24
), pp.
7214
7224
.10.1016/j.ces.2007.07.036
9.
Zhao
,
P.
,
Hargrave
,
G. K.
,
Versteeg
,
H. K.
,
Garner
,
C. P.
,
Reid
,
B. A.
,
Long
,
E. J.
, and
Zhao
,
H.
,
2018
, “
The Dynamics of Droplet Impact on a Heated Porous Surface
,”
Chem. Eng. Sci.
,
190
, pp.
232
247
.10.1016/j.ces.2018.06.030
10.
Wang
,
X.
,
Sun
,
D.-L.
,
Wang
,
X.-D.
, and
Yan
,
W.-M.
,
2019
, “
Dynamics of Droplets Impacting Hydrophilic Surfaces Decorated With a Hydrophobic Strip
,”
Int. J. Heat Mass Transfer
,
135
, pp.
235
246
.10.1016/j.ijheatmasstransfer.2019.01.135
11.
Tang
,
C.
,
Qin
,
M.
,
Weng
,
X.
,
Zhang
,
X.
,
Zhang
,
P.
,
Li
,
J.
, and
Huang
,
Z.
,
2017
, “
Dynamics of Droplet Impact on Solid Surface With Different Roughness
,”
Int. J. Multiphase Flow
,
96
, pp.
56
69
.10.1016/j.ijmultiphaseflow.2017.07.002
12.
Xu
,
Y.
,
Vincent
,
S.
,
He
,
Q.-C.
, and
Le-Quang
,
H.
,
2019
, “
Spread and Recoil of Liquid Droplets Impacting on Solid Surfaces With Various Wetting Properties
,”
Surf. Coat. Technol.
,
357
, pp.
140
152
.10.1016/j.surfcoat.2018.09.079
13.
Xu
,
J.
,
Chen
,
Y.
, and
Xie
,
J.
,
2018
, “
Non-Dimensional Numerical Study of Droplet Impacting on Heterogeneous Hydrophilicity/Hydrophobicity Surface
,”
Int. J. Heat Mass Transfer
,
116
, pp.
951
968
.10.1016/j.ijheatmasstransfer.2017.09.068
14.
Wang
,
Y.
,
Jian
,
M.
, and
Zhang
,
X.
,
2019
, “
Lateral Motion of a Droplet after Impacting on Groove-Patterned Superhydrophobic Surfaces
,”
Colloids Surf. A
,
570
, pp.
48
54
.10.1016/j.colsurfa.2019.03.013
15.
Lin
,
D.-J.
,
Wang
,
L.
,
Wang
,
X.-D.
, and
Yan
,
W.-M.
,
2019
, “
Reduction in the Contact Time of Impacting Droplets by Decorating a Rectangular Ridge on Superhydrophobic Surfaces
,”
Int. J. Heat Mass Transfer
,
132
, pp.
1105
1115
.10.1016/j.ijheatmasstransfer.2018.12.087
16.
Choi
,
M.
,
Son
,
G.
, and
Shim
,
W.
,
2017
, “
A Level-Set Method for Droplet Impact and Penetration Into a Porous Medium
,”
Comput. Fluids
,
145
, pp.
153
166
.10.1016/j.compfluid.2016.12.014
17.
Wang
,
Y.
,
Gratadeix
,
A.
,
Do-Quang
,
M.
, and
Amberg
,
G.
,
2016
, “
Events and Conditions in Droplet Impact: A Phase Field Prediction
,”
Int. J. Multiphase Flow
,
87
, pp.
54
65
.10.1016/j.ijmultiphaseflow.2016.08.009
18.
Shen
,
C.
,
Zhang
,
C.
,
Gao
,
M.
,
Li
,
X.
,
Liu
,
Y.
,
Ren
,
L.
, and
Moita
,
A. S.
,
2018
, “
Investigation of Effects of Receding Contact Angle and Energy Conversion on Numerical Prediction of Receding of the Droplet Impact Onto Hydrophilic and Superhydrophilic Surfaces
,”
Int. J. Heat Fluid Flow
,
74
, pp.
89
109
.10.1016/j.ijheatfluidflow.2018.09.015
19.
Li
,
D.
, and
Duan
,
X.
,
2019
, “
Numerical Analysis of Droplet Impact and Heat Transfer on an Inclined Wet Surface
,”
Int. J. Heat Mass Transfer
,
128
, pp.
459
468
.10.1016/j.ijheatmasstransfer.2018.09.025
20.
Wang
,
Y.
, and
Chen
,
S.
,
2015
, “
Droplets Impact on Textured Surfaces: Mesoscopic Simulation of Spreading Dynamics
,”
Appl. Surf. Sci.
,
327
, pp.
159
167
.10.1016/j.apsusc.2014.11.148
21.
Rashidian
,
H.
,
Sellier
,
M.
, and
Mandin
,
P.
,
2019
, “
Dynamic Wetting of an Occlusion After Droplet Impact
,”
Int. J. Multiphase Flow
,
111
, pp.
264
271
.10.1016/j.ijmultiphaseflow.2018.12.002
22.
Li
,
Y.
,
Zheng
,
Y.
,
Chen
,
Y.
,
Lan
,
Z.
, and
Ma
,
X.
,
2019
, “
The Exact Regulation of Temperature Evolutions for Droplet Impact on Ultrathin Cold Films at Superhydrophilic Surface
,”
Chem. Eng. Sci.
,
193
, pp.
205
216
.10.1016/j.ces.2018.09.014
23.
Simhadri Rajesh
,
R.
,
Naveen
,
P. T.
,
Krishnakumar
,
K.
, and
Kumar Ranjith
,
S.
,
2019
, “
Dynamics of Single Droplet Impact on Cylindrically-Curved Superheated Surfaces
,”
Exp. Therm. Fluid Sci.
,
101
, pp.
251
262
.10.1016/j.expthermflusci.2018.10.011
24.
Abdelmagid
,
G.
,
Yilbas
,
B. S.
,
Al-Sharafi
,
A.
,
Al-Qahtani
,
H.
, and
Al-Aqeeli
,
N.
,
2019
, “
Water Droplet on Inclined Dusty Hydrophobic Surface: Influence of Droplet Volume on Environmental Dust Particles Removal
,”
RSC Adv.
,
9
(
7
), pp.
3582
3596
.10.1039/C8RA10092F
25.
Heib
,
F.
, and
Schmitt
,
M.
,
2016
, “
Statistical Contact Angle Analyses With the High-Precision Drop Shape Analysis (HPDSA) Approach: Basic Principles and Applications
,”
Coatings
,
6
(
4
), p.
57
.10.3390/coatings6040057
26.
COMSOL, Inc.
,
2017
, “
COMSOL Multiphysics
,” COMSOL, Bombay, India.
27.
Gelfand
,
B. E.
,
1996
, “
Droplet Breakup Phenomena in Flows With Velocity Lag
,”
Prog. Energy Combust. Sci.
,
22
(
3
), pp.
201
265
.10.1016/S0360-1285(96)00005-6
28.
Hu
,
J.
,
Jia
,
R.
,
Wan
,
K.
, and
Xiong
,
X.
,
2014
, “
Simulation of Droplet Impingement on a Solid Surface by the Level Set Method
,”
Proceedings of the COMSOL Conference
, Boston, MA, Oct., pp.
8
10
.
29.
Patil
,
N. D.
,
Sharma
,
A.
, and
Bhardwaj
,
R.
,
2017
, “
Level Set Method Based Simulations on Impact-Dynamics of Bouncing and Non-Bouncing Droplet on Super-Hydrophobic Substrates
,”
Fluid Mechanics and Fluid Power–Contemporary Research
,
Springer
, Berlin, pp.
1141
1149
.
30.
Khojasteh
,
D.
,
Manshadi
,
M. K. D.
,
Mousavi
,
S. M.
, and
Kamali
,
R.
,
2016
, “
Droplet Impact on Superhydrophobic Surface Under the Influence of an Electric Field
,”
Annual Meeting for Third Annual International Conference on New Research Achievements in Chemistry and Chemical Engineering
, Tehran, Iran, Sept., pp.
1
9
.
31.
Hsu
,
C.-Y.
,
Liang
,
C.-C.
,
Teng
,
T.-L.
, and
Nguyen
,
A.-T.
,
2013
, “
A Numerical Study on High-Speed Water Jet Impact
,”
Ocean Eng.
,
72
, pp.
98
106
.10.1016/j.oceaneng.2013.06.012
32.
Li
,
J.
,
Zhang
,
B.
,
Guo
,
P.
, and
Lv
,
Q.
,
2014
, “
Impact Force of a Low Speed Water Droplet Colliding on a Solid Surface
,”
J. Appl. Phys.
,
116
(
21
), p.
214903
.10.1063/1.4903316
33.
Gordillo
,
L.
,
Sun
,
T.-P.
, and
Cheng
,
X.
,
2018
, “
Dynamics of Drop Impact on Solid Surfaces: Evolution of Impact Force and Self-Similar Spreading
,”
J. Fluid Mech.
,
840
, pp.
190
214
.10.1017/jfm.2017.901
34.
Tatekura
,
Y.
,
Watanabe
,
M.
,
Kobayashi
,
K.
, and
Sanada
,
T.
,
2018
, “
Pressure Generated at the Instant of Impact Between a Liquid Droplet and Solid Surface
,”
R. Soc. Open Sci.
,
5
(
12
), p.
181101
.10.1098/rsos.181101
35.
Zamora
,
R.
,
Ortega
,
J. J. H.
,
López
,
J.
,
Faura
,
F.
, and
Hernández
,
J.
,
2015
, “
Development of a Facility for Molten Metal Micro-Droplets Generation. Application to Microfabrication by Deposition
,”
Procedia Eng.
,
132
, pp.
110
117
.10.1016/j.proeng.2015.12.486
You do not currently have access to this content.