Abstract

A comparative study on the highly unsteady flow field in single- and two-blade pumps is performed. Stationary pump characteristics, as well as pressure and flow rate fluctuations, are presented. Wall pressure fluctuations were measured in the suction and pressure pipe as well as at several locations within the volute casing by piezoresistive transducers. Flow rate fluctuations were evaluated by a recently presented measurement system based on an electromagnetic flowmeter (Melzer et al. 2020, “A System for Time-Fluctuating Flow Rate Measurements in a Single-Blade Pump Circuit,” Flow Meas. Instrum., 71, p. 101675). Measurements were accompanied by three-dimensional (3D) flow simulations with the open-source cfd software foam-extend. A thorough grid study and validation of the simulation were performed. By a complementary analysis of measurement and simulation results, distinctive differences between both pump types were observed, e.g., flow rate and pressure fluctuation magnitudes are significantly higher in the single-blade pump. In relation to the respective mean values, flow rate fluctuation magnitudes are one order lower than pressure fluctuation magnitudes for both pumps. For the two-blade pump, fluctuations attenuate toward overload irrespective of the particular pump circuit, while they rise for the single-blade pump. 3D simulation results yield detailed insight into the spatially and temporally resolved impeller–volute interaction and reveal that the single-blade impeller pushes a high-pressure flow region forward in a way as a positive displacement pump, resulting in an inherently fluctuating velocity and pressure distribution within the volute.

References

References
1.
Thamsen
,
P. U.
,
Bubelach
,
T.
,
Pensler
,
T.
, and
Springer
,
P.
,
2008
, “
Cavitation in Single-Vane Sewage Pumps
,”
Int. J. Rotating Mach.
,
2008
, pp.
1
6
.10.1155/2008/354020
2.
Thamsen
,
P. U.
,
Lee
,
A.
, and
Oesterle
,
M.
,
2008
, “
Reliability Improvements in Sewage Pumping Using Diagnosis With Active Reaction
,”
Water Pract. Technol.
,
3
(
4
), pp.
1
8
.10.2166/wpt.2008.088
3.
Benra
,
F. K.
,
Dohmen
,
H. J.
, and
Sommer
,
M.
,
2006
, “
Flow Field Visualization of a Single-Blade Centrifugal Pump Using PIV-Method—Comparison to Numerical Results
,”
J. Visual.
,
9
(
4
), pp.
358
358
.10.1007/BF03181771
4.
De Souza
,
B.
,
Daly
,
J.
,
Niven
,
A.
, and
Frawley
,
P.
,
2006
, “
Numerical Simulation of Transient Flow and Head Distribution Through a Single Blade Centrifugal Pump Impeller
,”
Proceedings of the Fourth WSEAS International Conference on Fluid Mechanics and Aerodynamics
, Elounda, Greece, Aug. 21–23, pp.
349
354.
5.
Zwingenberg
,
M.
, and
Benra
,
F. K.
,
2006
, “
Measurement of the Periodic Unsteady Flow in a Single-Blade Centrifugal Pump by PIV-Method
,”
Proceedings of the Fourth WSEAS International Conference on Fluid Mechanics and Aerodynamics
, Elounda, Greece, Aug. 21–23, pp.
325
330
.
6.
Melzer
,
S.
,
Schepeler
,
S.
,
Kalkkuhl
,
T.
, and
Skoda
,
R.
,
2019
, “
Experimental Analysis of Transient Flow Characteristics and Impeller Deflection in Single-Blade and Two-Blade Pumps
,”
Proceedings of the Fourth International Rotating Equipment Conference
, Wiesbaden, Germany, Paper No. 081.
7.
Pei
,
J.
,
Dohmen
,
H. J.
,
Yuan
,
S. Q.
, and
Benra
,
F.-K.
,
2012
, “
Investigation of Unsteady Flow-Induced Impeller Oscillations of a Single-Blade Pump Under Off-Design Conditions
,”
J. Fluids Struct.
,
35
, pp.
89
104
.10.1016/j.jfluidstructs.2012.08.005
8.
Benra
,
F.-K.
, and
Dohmen
,
H. J.
,
2008
, “
Investigation on the Time-Variant Flow in a Single-Blade Centrifugal Pump
,” Proceedings of the Fifth WSEAS International Conference on Fluid Mechanics (
FLUIDS'08
), Acapulco, Mexico, Jan. 25–27, pp.
59
64
.http://www.wseas.us/e-library/conferences/2008/mexico/fluids/6-573-124.pdf
9.
Benra
,
F.-K.
, and
Dohmen
,
H. J.
,
2007
, “
Comparison of Pump Impeller Orbit Curves Obtained by Measurement and FSI Simulation
,”
ASME
Paper No. PVP2007-26149.10.1115/PVP2007-26149
10.
Benra
,
F.-K.
,
2006
, “
Numerical and Experimental Investigation on the Flow Induced Oscillations of a Single-Blade Pump Impeller
,”
ASME J. Fluids Eng.
,
128
(
4
), pp.
783
793
.10.1115/1.2201629
11.
Okamura
,
T.
,
1980
, “
Radial Thrust in Centrifugal Pumps With a Single-Vane Impellers
,”
Bull. JSME
,
23
(
180
), pp.
895
901
.10.1299/jsme1958.23.895
12.
Savilius
,
N.
, and
Benra
,
F.-K.
,
2006
, “
Experimental Investigation of Transient Hydrodynamic Forces of a Single-Blade Centrifugal Pump
,”
Proceedings of the Fourth WSEAS International Conference on Fluid Mechanics and Aerodynamics
, Elounda, Greece, Aug. 21–23, pp.
331
336
.
13.
Benra
,
F.-K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2003
, “
Calculation of Hydrodynamic Forces and Flow Induced Vibrations of Centrifugal Sewage Water Pumps
,”
ASME
Paper No. FEDSM2003-45102.10.1115/FEDSM2003-45102
14.
Liu
,
H.-L.
,
Lu
,
M.-Z.
,
Lu
,
B.-B.
,
Tan
,
M.-G.
,
Wang
,
Y.
, and
Wang
,
K.
,
2009
, “
Unsteady Flow Numerical Simulation in a Double Channel Pump and Measurements of Pressure Fluctuation at Volute Outlet
,”
ASME
Paper No. FEDSM2009-78065.10.1115/FEDSM2009-78065
15.
Liu
,
H.
,
Wang
,
K.
,
Kim
,
H.-B.
, and
Tan
,
M.
,
2013
, “
Experimental Investigation of the Unsteady Flow in a Double-Blade Centrifugal Pump Impeller
,”
Sci. China Technol. Sci.
,
56
(
4
), pp.
812
817
.10.1007/s11431-013-5154-0
16.
Liu
,
H.
,
Wang
,
K.
,
Yuan
,
S.
,
Tan
,
M.
,
Wang
,
Y.
, and
Dong
,
L.
,
2012
, “
Multicondition Optimization and Experimental Measurements of a Double-Blade Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011103
.10.1115/1.4023077
17.
Melzer
,
S.
,
Schepeler
,
S.
,
Förster
,
J.
,
Friderich
,
J.
,
Kalkkuhl
,
T.
, and
Skoda
,
R.
,
2019
, “
Experimental Investigation of Transient Characteristics of Single-Blade and Two-Blade Pumps
,”
Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics (ETC13)
, Lausanne, Switzerland, Apr. 8–12, p.
12
.
18.
Keays
,
J.
, and
Meskell
,
C.
,
2006
, “
A Study of the Behaviour of a Single-Bladed Waste-Water Pump
,”
Proc. Inst. Mech. Eng., Part E
,
220
(
2
), pp.
79
87
.10.1243/09544089JPME60
19.
Auvinen
,
M.
,
Ala-Juusela
,
J.
,
Nicholas
,
P.
, and
Siikonen
,
T.
,
2010
, “
Time-Accurate Turbomachinery Simulations With Open-Source CFD; Flow Analysis of a Single-Channel Pump With OpenFOAM
,”
Fifth European Conference on Computational Fluid Dynamics, Eccomas CFD 2010
, Eccomas, Lisbon, Portugal, June 14–17, 2010, pp.
1
20
.
20.
De Souza
,
B.
,
Niven
,
A.
, and
McEvoy
,
R.
,
2010
, “
A Numerical Investigation of the Constant-Velocity Volute Design Approach as Applied to the Single Blade Impeller Pump
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061103
.10.1115/1.4001773
21.
Pei
,
J.
,
Yuan
,
S.
,
Benra
,
F.-K.
, and
Dohmen
,
H. J.
,
2012
, “
Numerical Prediction of Unsteady Pressure Field Within the Whole Flow Passage of a Radial Single-Blade Pump
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101103
.10.1115/1.4007382
22.
Pei
,
J.
,
Yuan
,
S.
, and
Yuan
,
J.
,
2013
, “
Numerical Analysis of Periodic Flow Unsteadiness in a Single-Blade Centrifugal Pump
,”
Sci. China Technol. Sci.
,
56
(
1
), pp.
212
221
.10.1007/s11431-012-5044-x
23.
Nishi
,
Y.
, and
Fukutomi
,
J.
,
2014
, “
Effect of Blade Outlet Angle on Unsteady Hydrodynamic Force of Closed-Type Centrifugal Pump With Single Blade
,”
Int. J. Rotating Mach.
,
2014
, pp.
1
16
.10.1155/2014/838627
24.
Schiffer
,
J.
,
Bodner
,
C.
,
Jaberg
,
H.
,
Korupp
,
S.
, and
Runte
,
L.
,
2016
, “
Performance Analysis of a Single-Blade Impeller Pump Based on Unsteady 3D Numerical Simulation
,”
Proceedings of the Third International Rotating Equipment Conference
, Düsseldorf, Germany, Sept. 14–15, pp.
1
12
.
25.
Melzer
,
S.
,
Munsch
,
P.
,
Förster
,
J.
,
Friderich
,
J.
, and
Skoda
,
R.
,
2020
, “
A System for Time-Fluctuating Flow Rate Measurements in a Single-Blade Pump Circuit
,”
Flow Meas. Instrum.
,
71
, p.
101675
.10.1016/j.flowmeasinst.2019.101675
26.
Melzer
,
S.
,
Müller
,
T.
,
Schepeler
,
S.
,
Kalkkuhl
,
T.
, and
Skoda
,
R.
,
2019
, “
Experimental and Numerical Investigation of the Transient Characteristics and Volute Casing Wall Pressure Fluctuations of a Single-Blade Pump
,”
Proc. Inst. Mech. Eng., Part E
,
233
(
2
), pp.
280
291
.10.1177/0954408918780524
27.
International Organisation for Standardisation
,
2012
,
Rotodynamic Pumps–Hydraulic Performance Acceptance Tests
,
International Organisation for Standardisation
,
Geneva, Switzerland
, Standard No. DIN9906.
28.
Joint Committee for Guides in Metrology (JCGM)–Working Group 1,
2008
, “
Evaluation of Measurement Data–Guide to the Expression of Uncertainty in Measurement
(GUM),” Joint Committee for Guides in Metrology,
Technical Report
.https://www.bipm.org/en/publications/guides/gum.html
29.
Menter
,
F.
, and
Esch
,
T.
,
2001
, “
Elements of Industrial Heat Transfer Prediction
,”
16th Brazilian Congress of Mechanical Engineering, Uberlandia, Minas Gerias, Brazil
, Nov. 21–30, pp.
117
127
.
30.
Casimir
,
N.
,
Zhu
,
X.
,
Hundshagen
,
M.
,
Ludwig
,
G.
, and
Skoda
,
R.
,
2020
, “
Numerical Study of Rotor-Stator Interaction of a Centrifugal Pump at Part Load With Special Emphasis on Unsteady Blade Load
,”
ASME J. Fluids Eng.
,
142
(
8
), p.
081203
.10.1115/1.4046622
31.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
32.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
, 15(10), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
33.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.10.2514/3.8284
34.
Warming
,
R. F.
, and
Beam
,
R. M.
,
1976
, “
Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows
,”
AIAA J.
,
14
(
9
), pp.
1241
1249
.10.2514/3.61457
35.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.10.1016/0021-9991(79)90145-1
36.
Kalitzin
,
G.
,
Medic
,
G.
,
Iaccarino
,
G.
, and
Durbin
,
P.
,
2005
, “
Near-Wall Behavior of RANS Turbulence Models and Implications for Wall Functions
,”
J. Comput. Phys.
,
204
(
1
), pp.
265
291
.10.1016/j.jcp.2004.10.018
37.
Vieser
,
W.
,
Esch
,
T.
, and
Menter
,
F. R.
,
2002
, “
Heat Transfer Predictions Using Advanced Two-Equation Turbulence Models
,” ANSYS, Canonburg, PA, Report No. CFX-VAL10/0602.
38.
ANSYS,
2017
, “
ANSYS ICEM CFD Help Manual
,” 17.2 ed.,
ANSYS
,
Canonsburg, PA
.
39.
Casimir
,
N.
,
Xiangyuan
,
Z.
,
Ludwig
,
G.
, and
Skoda
,
R.
,
2019
, “
Assessment of Statistical Eddy-Viscosity Turbulence Models for Unsteady Flow at Part and Overload Operation of Centrifugal Pumps
,”
Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics (ETC'13
), Lausanne, Switzerland, Apr. 8–12, p.
13
.
40.
Beaudoin
,
M.
, and
Jasak
,
H.
,
2008
, “
Development of a Generalized Grid Interface for Turbomachinery Simulations With OpenFOAM
,”
Open Source CFD International Conference
, Berlin, Germany, Dec. 4–5, p.
11
.
41.
Nishi
,
Y.
,
Fujiwara
,
R.
, and
Fukutomi
,
J.
,
2009
, “
Design Method for Single-Blade Centrifugal Pump Impeller
,”
J. Fluid Sci. Technol.
,
4
(
3
), pp.
786
800
.10.1299/jfst.4.786
42.
Limbach
,
P.
, and
Skoda
,
R.
,
2017
, “
Numerical and Experimental Analysis of Cavitating Flow in a Low Specific Speed Centrifugal Pump With Different Surface Roughness
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101201
.10.1115/1.4036673
43.
Willinger
,
R.
,
2018
, “
Performance Characteristic of a Single-Blade Pump From the Viewpoint of a Positive Displacement Machine
,”
20th International Seminar on Hydropower Plants
, Vienna, Austria, Nov. 14–16, pp.
129
138
.
44.
Jülich Supercomputing Centre
,
2018
, “
JURECA: Modular Supercomputer at Jülich Supercomputing Centre
,”
J. Large-Scale Res. Facil.
,
4
(
A132
), p.
7
.
45.
Jülich Supercomputing Centre
,
2019
, “
JUWELS: Modular Tier-0/1 Supercomputer at the Jülich Supercomputing Centre
,”
J. Large-Scale Res. Facil.
,
5
(
A135
), p.
8
.
You do not currently have access to this content.