Abstract

The Marangoni propulsion of spheres and elliptical disks floating on the air–water interface were studied to understand the effect of particle shape on its motion and its stability at moderate Reynolds numbers. Self-propulsion of the Marangoni surfer was achieved by coating half of the spheres and the elliptical disks with either a solution of soap or isopropyl alcohol (IPA). The presence of the soap or IPA resulted in a surface tension gradient across the particles which propelled the particles in the direction of increasing surface tension. Beyond a critical velocity, a transition was observed from a straight-line motion to a rotational motion. These vortices were observed to shed above a critical Reynolds number resulting in an unbalanced torque that caused the particles to rotate. Increasing the aspect ratio between the major and minor axes of the elliptical disks was found to decrease their stability and greatly enhance their rate of rotation. This was especially true for elliptical disks traveling in a direction parallel to their major axis. The interactions between the particles and the wall of a Petri dish were also studied. Repulsive, concave curvature was found to decrease stability and enhance rotational motion, while attractive, convex curvature was shown to stabilize the straight-line motion of the spheres. For the neutrally buoyant elliptical disks, the presence of the bounding wall was found to greatly stabilize the straight-line motion of the elliptical disks when they were traveling in a direction parallel to their minor axis.

References

References
1.
Scriven
,
L. E.
, and
Sternling
,
C. V.
,
1960
, “
The Marangoni Effects
,”
Nature
,
187
(
4733
), pp.
186
188
.10.1038/187186a0
2.
Rayleigh
,
L.
,
1889
, “
Measurements of the Amount of Oil Necessary in Order to Check the Motions of Camphor Upon Water
,”
Proc. R. Soc. Lond.
,
47
, pp.
364
367
.
3.
Suematsu
,
N. J.
,
Ikura
,
Y.
,
Nagayama
,
M.
,
Kitahata
,
H.
,
Kawagishi
,
N.
,
Murakami
,
M.
, and
Nakata
,
S.
,
2010
, “
Mode-Switching of the Self-Motion of a Camphor Boat Depending on the Diffusion Distance of Camphor Molecules
,”
J. Phys. Chem. C
,
114
(
21
), pp.
9876
9882
.10.1021/jp101838h
4.
Renney
,
C.
,
Brewer
,
A.
, and
Mooibroek
,
T. J.
,
2013
, “
Easy Demonstration of the Marangoni Effect by Prolonged and Directional Motion: Soap Boat 2.0
,”
J. Chem. Educ.
,
90
(
10
), pp.
1353
1357
.10.1021/ed400316a
5.
Gidituri
,
H.
,
Panchagnula
,
M. V.
, and
Pototsky
,
A.
,
2019
, “
Dynamics of a Fully Wetted Marangoni Surfer at the Fluid–Fluid Interface
,”
Soft Matter
,
15
(
10
), pp.
2284
2291
.10.1039/C8SM02102C
6.
Sur
,
S.
,
Masoud
,
H.
, and
Rothstein
,
J. P.
,
2019
, “
Translational and Rotational Motion of Disk-Shaped Marangoni Surfers
,”
Phys. Fluids
,
31
(
10
), p.
102101
.10.1063/1.5119360
7.
Nakata
,
S.
,
Iguchi
,
Y.
,
Ose
,
S.
,
Kuboyama
,
M.
,
Ishii
,
T.
, and
Yoshikawa
,
K.
,
1997
, “
Self-Rotation of a Camphor Scraping on Water: New Insight Into the Old Problem
,”
Langmuir
,
13
(
16
), pp.
4454
4458
.10.1021/la970196p
8.
Takabatake
,
F.
,
Magome
,
N.
,
Ichikawa
,
M.
, and
Yoshikawa
,
K.
,
2011
, “
Spontaneous Mode-Selection in the Self-Propelled Motion of a Solid/Liquid Composite Driven by Interfacial Instability
,”
J. Chem. Phys.
,
134
(
11
), p.
114704
.10.1063/1.3567096
9.
Koyano
,
Y.
,
Gryciuk
,
M.
,
Skrobanska
,
P.
,
Malecki
,
M.
,
Sumino
,
Y.
,
Kitahata
,
H.
, and
Gorecki
,
J.
,
2017
, “
Relationship Between the Size of a Camphor-Driven Rotor and Its Angular Velocity
,”
Phys. Rev. E
,
96
(
1
), p.
012609
.10.1103/PhysRevE.96.012609
10.
Nagai
,
K. H.
,
Takabatake
,
F.
,
Sumino
,
Y.
,
Kitahata
,
H.
,
Ichikawa
,
M.
, and
Yoshinaga
,
N.
,
2013
, “
Rotational Motion of a Droplet Induced by Interfacial Tension
,”
Phys. Rev. E
,
87
(
1
), p.
013009
.10.1103/PhysRevE.87.013009
11.
Angelini
,
T. E.
,
Roper
,
M.
,
Kolter
,
R.
,
Weitz
,
D. A.
, and
Brenner
,
M. P.
,
2009
, “
Bacillus subtilis Spreads by Surfing on Waves of Surfactant
,”
PNAS
,
106
(
43
), pp.
18109
18113
.10.1073/pnas.0905890106
12.
Fauvart
,
M.
,
Phillips
,
P.
,
Bachaspatimayum
,
D.
,
Verstraeten
,
N.
,
Fransaer
,
J.
,
Michiels
,
J.
, and
Vermant
,
J.
,
2012
, “
Surface Tension Gradient Control of Bacterial Swarming in Colonies of Pseudomonas aeruginosa
,”
Soft Matter
,
8
(
1
), pp.
70
76
.10.1039/C1SM06002C
13.
Schildknecht
,
H.
,
1976
, “
Chemical Ecology-a Chapter of Modern Natural Products Chemistry
,”
Angew. Chem. Int.
,
15
(
4
), pp.
214
222
.10.1002/anie.197602141
14.
Andersen
,
N. M.
,
1976
, “
A Comparative Study of Locomotion on the Water Surface in Semiaquatic Bugs (Insects, Hemiptera, Gerromorpha
),”
Vidensk. Meddr. Dan. Naturhist. Foren.
,
139
, pp.
337
396
.10.1016/j.cub.2016.09.061
15.
Betz
,
O.
,
2002
, “
Performance and Adaptive Value of Tarsal Morphology in Rove Beetles of the Genus Stenus (Coleoptera, Staphylinidae)
,”
J. Exp. Biol.
,
205
, pp.
1097
1113
.https://pubmed.ncbi.nlm.nih.gov/11919269/
16.
Bush
,
J. W.
, and
Hu
,
D. L.
,
2006
, “
Walking on water: Biolocomotion at the interface
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
339
369
.10.1146/annurev.fluid.38.050304.092157
17.
Würger
,
A.
,
2014
, “
Thermally Driven Marangoni Surfers
,”
J. Fluid Mech.
,
752
, pp.
589
601
.10.1017/jfm.2014.349
18.
Lauga
,
E.
, and
Davis
,
A. M.
,
2012
, “
Viscous Marangoni Propulsion
,”
J. Fluid Mech.
,
705
, pp.
120
133
.10.1017/jfm.2011.484
19.
Masoud
,
H.
, and
Stone
,
H. A.
,
2014
, “
A Reciprocal Theorem for Marangoni Propulsion
,”
J. Fluid Mech.
,
741
, pp. R41–R47.https://doi.org/10.1017/jfm.2014.8
20.
Masoud
,
H.
, and
Shelley
,
M. J.
,
2014
, “
Collective Surfing of Chemically Active Particles
,”
Phys. Rev. Lett.
,
112
(
12
), p.
128304
.10.1103/PhysRevLett.112.128304
21.
Vandadi
,
V.
,
Kang
,
S. J.
, and
Masoud
,
H.
,
2017
, “
Reverse Marangoni Surfing
,”
J. Fluid Mech.
,
811
, pp.
612
621
.10.1017/jfm.2016.695
22.
Fei
,
W.
,
Gu
,
Y.
, and
Bishop
,
K. J.
,
2017
, “
Active Colloidal Particles at Fluid-Fluid Interfaces
,”
Curr. Opin. Colloid Interface Sci.
,
32
, pp.
57
68
.10.1016/j.cocis.2017.10.001
23.
Vella
,
D.
, and
Mahadevan
,
L.
,
2005
, “
The “Cheerios Effect
,”
Am. J. Phys.
,
73
(
9
), pp.
817
825
.10.1119/1.1898523
24.
Kralchevsky
,
P. A.
, and
Nagayama
,
K.
,
2000
, “
Capillary Interactions Between Particles Bound to Interfaces, Liquid Films and Biomembranes
,”
Adv. Coll. Int. Sci.
,
85
(
2–3
), pp.
145
192
.10.1016/S0001-8686(99)00016-0
25.
Zeng
,
C.
,
Bissig
,
H.
, and
Dinsmore
,
A. D.
,
2006
, “
Particles on Droplets: From Fundamental Physics to Novel Materials
,”
Solid State Commun.
,
139
(
11–12
), pp.
547
556
.10.1016/j.ssc.2006.06.001
26.
Daniello
,
R.
,
Donnell
,
M.
,
Khan
,
K.
, and
Rothstein
,
J. P.
,
2014
, “
The Effect of Contact Angle and Density on the Orientation, Stability and Assembly of Floating Cubes
,”
Phys. Rev. E
,
89
(
2
), p.
023014
.10.1103/PhysRevE.89.023014
27.
Kassuga
,
T. D.
, and
Rothstein
,
J. P.
,
2015
, “
Buckling of Particle Laden Interfaces
,”
J. Colloid Int. Sci.
,
448
, pp.
287
296
.10.1016/j.jcis.2015.02.012
28.
Kassuga
,
T. D.
, and
Rothstein
,
J. P.
,
2016
, “
The Effect of Shear and Confinement on the Buckling of Particle-Laden Interfaces
,”
J. Phys.: Condens. Matter
,
28
(
2
), p.
025101
.10.1088/0953-8984/28/2/025101
29.
Cavallaro
,
M.
,
Botto
,
L.
,
Lewandowski
,
E. P.
,
Wang
,
M.
, and
Stebe
,
K. J.
,
2011
, “
Curvature-Driven Capillary Migration and Assembly of Rod-Like Particles
,”
Proc. Natl. Acad. Sci.
,
108
(
52
), pp.
20923
20928
.10.1073/pnas.1116344108
30.
Loudet
,
J. C.
, and
Pouligny
,
B.
,
2011
, “
How Do Mosquito Eggs Self-Assemble on the Water Surface?
,”
Eur. Phys. J. E
,
34
(
8
), p.
76
.10.1140/epje/i2011-11076-9
31.
Sane
,
A.
,
Mandre
,
S.
, and
Kim
,
I.
,
2018
, “
Surface Tension of Flowing Soap Films
,”
J. Fluid Mech.
,
841
, p. R2.https://doi.org/10.1017/jfm.2018.28
32.
White
,
F. M.
,
2003
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
33.
Pimienta
,
V.
, and
Antoine
,
C.
,
2014
, “
Self-Propulsion on Liquid Surfaces
,”
Curr. Opin. Colloid Interface Sci.
,
19
(
4
), pp.
290
299
.10.1016/j.cocis.2014.04.001
34.
Zhang
,
L.
,
Yuan
,
Y.
,
Qiu
,
X.
,
Zhang
,
T.
,
Chen
,
Q.
, and
Huang
,
X.
,
2017
, “
Marangoni Effect-Driven Motion of Miniature Robots and Generation of Electricity on Water
,”
Langmuir
,
33
(
44
), pp.
12609
12615
.10.1021/acs.langmuir.7b03270
35.
Morris
,
C. J.
, and
Parviz
,
B. A.
,
2006
, “
Self-Assembly and Characterization of Marangoni Microfluidic Actuators
,”
J. Micromech. Microeng.
,
16
(
5
), pp.
972
980
.10.1088/0960-1317/16/5/014
36.
Varanakkottu
,
S. N.
,
Anyfantakis
,
M.
,
Morel
,
M.
,
Rudiuk
,
S.
, and
Baigl
,
D.
,
2016
, “
Light-Directed Particle Patterning by Evaporative Optical Marangoni Assembly
,”
Nano Lett.
,
16
(
1
), pp.
644
650
.10.1021/acs.nanolett.5b04377
37.
Liu
,
I. B.
,
Sharifi-Mood
,
N.
, and
Stebe
,
K. J.
,
2016
, “
Curvature-Driven Assembly in Soft Matter
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng.
, 374(2072), p. 20150133.10.1098/rsta.2015.0133
You do not currently have access to this content.