Abstract

A new approach based on the momentum balance to calculate the pressure drop in turbulent flow through sharp-edged axisymmetric sudden contractions is presented. The momentum balance needs the velocity as well as the pressure distributions on the boundaries of the control volume. These distributions are obtained by a series of numerical simulations with different settings for the discharge, as well as the contraction ratio. The numerical model itself is validated by the comparison of the simulated and measured pressure drops in a laboratory experiment at different positions. To get easily applicable hydraulic formulations for the pressure drop depending on the discharge and the contraction ratio, the missing momentum and pressure coefficients are determined from the simulated velocity and pressure distributions. Only the pressure coefficient shows a dependency on the contraction ratio. After fitting the dependency by a simple analytical expression, a new formulation for the hydraulics of a sharp-edged sudden contraction based solely on momentum balance was obtained. The comparison with own experimental results as well as the classical parameterization of Idelchik show in both cases very good agreement.

References

References
1.
Malcherek
,
A.
,
2016
, “
History of the Torricelli Principle and a New Outflow Theory
,”
J. Hydraulic Eng.
,
142
(
11
), p.
02516004
.10.1061/(ASCE)HY.1943-7900.0001232
2.
Malcherek
,
A.
,
2018
, “
300 Years ‘de Motu Aquae Mixto’: What Poleni Really Wrote and a New Overflow Theory Based on Momentum Balance
,”
7th IAHR International Symposium on Hydraulic Structures
, Aachen, Germany, May 15–18, pp.
78
88
.10.15142/T3693F
3.
Malcherek
,
A.
,
2018
, “
A New Theory for the Sluice Gate Hydraulics Basing on the Momentum Balance—A Discussion Paper
,”
WasserWirtschaft
,
108
(
5
), pp.
40
44
.https://www.researchgate.net/publication/325554924_A_new_theory_for_the_sluice_gate_hydraulics_basing_on_the_momentum_balance_-A_discussion_pape
4.
Bernoulli
,
J.
,
1742
,
Opera Omnia, Tomus I–IV
,
Marci-Michaelis Bousquet
,
Lausanne, Geneva, Switzerland
.
5.
Weisbach
,
J.
,
1855
,
Die Experimental-Hydraulik
, J. G. Engelhardt, Freiberg, Germany.
6.
Kays
,
W.
,
1950
, “
Loss Coefficients for Abrupt Changes in Flow Cross Section With Low Reynolds Number Flow in Single and Multiple Tube Systems
,”
Trans. ASME
,
72
(
8
), pp.
1067
1074
.
7.
Fester
,
V.
,
Mbiya
,
B.
, and
Slatter
,
P.
,
2008
, “
Energy Losses of Non-Newtonian Fluids in Sudden Pipe Contractions
,”
Chem. Eng. J.
,
145
(
1
), pp.
57
63
.10.1016/j.cej.2008.03.003
8.
Sanchez
,
F. P.
,
Machuca
,
J. L. N.
,
Franco
,
A. T.
, and
Morales
,
R. E. M.
,
2010
, “
Experimental and Numerical Study of Turbulent Newtonian Flow Through an Axisymmetric Sudden Contraction
,”
Proceedings of ENCIT 2010, ABCM Associação Brasileira de Engenharia e Ciências Mecânicas
, Uberlandia, Brazil, Dec. 5–10, Paper No. ENC10-0572.https://www.abcm.org.br/anais/encit/2010/PDF/ENC10-0572.pdf
9.
Idelchik
,
I. E.
,
1986
, “
Some Refinements of the Contraction and Resistance Coefficients in the Case of a Sudden Contraction of the Flow
,”
Hydrotech. Constr.
,
20
(
10
), pp.
591
594
.10.1007/BF01427247
10.
Idelchik
,
I. E.
,
1966
, Handbook of Hydraulic Resistance, 1st ed.,
U.S. Atomic Energy Commission
,
Washington, DC
.
11.
McCabe
,
W. L.
,
Smith
,
J. C.
, and
Harriott
,
P.
,
1993
,
Unit Operations of Chemical Engineering
(McGraw-Hill Chemical Engineering Series), 5th ed.,
McGraw-Hill
,
New York
.
12.
Bullen
,
P. R.
,
Cheeseman
,
D. J.
,
Hussain
,
L. A.
, and
Ruffellt
,
A. E.
,
1987
, “
The Determination of Pipe Contraction Pressure Loss Coefficients for Incompressible Turbulent Flow
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
111
118
.10.1016/0142-727X(87)90008-7
13.
Astarita
,
G.
, and
Greco
,
G.
,
1968
, “
Excess Pressure Drop in Laminar Flow Through Sudden Contraction. Newtonian Liquids
,”
Ind. Eng. Chem. Fundam.
,
7
(
1
), pp.
27
31
.10.1021/i160025a005
14.
Edwards
,
M.
,
Jadallah
,
M.
, and
Smith
,
R.
,
1985
, “
Head Loss in Pipe Fittings at Low Reynolds Number
,”
Chem. Eng. Res. Des.
,
63
(
1
), pp.
43
50
.https://www.semanticscholar.org/paper/Head-losses-in-pipe-fittings-at-low-Reynolds-Edwards-Jadallah/81957112e4983c38024f2eb8391e029f025feaee
15.
Benedict
,
R. P.
,
Carlucci
,
N. A.
, and
Swetz
,
S. D.
,
1966
, “
Flow Losses in Abrupt Enlargements and Contractions
,”
ASME J. Eng. Power
,
88
(
1
), pp.
73
81
.10.1115/1.3678482
16.
Benedict
,
R. P.
,
1980
,
Fundamentals of Pipe Flow
,
Wiley
,
New York
.
17.
Glück
,
B.
,
1988
,
Hydrodynamische und Gasdynamische Rohrströmung
, 1 ed.,
Verl. für Bauwesen
,
Berlin
.
18.
Durst
,
F.
, and
Loy
,
T.
,
1985
, “
Investigations of Laminar Flow in a Pipe With Sudden Contraction of Cross Sectional Area
,”
Comput. Fluids
,
13
(
1
), pp.
15
36
.10.1016/0045-7930(85)90030-1
19.
Haaland
,
S. E.
,
1983
, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.10.1115/1.3240948
20.
Rennels
,
D. C.
, and
Hudson
,
H. M.
,
2012
,
Pipe Flow: A Practical and Comprehensive Guide
,
Wiley
,
Hoboken, NJ
.
21.
ANSYS, Inc.
,
2019
,
ANSYS CFX-Solver Theory Guide
,
Instruction Manual ANSYS CFX Release 19.3
, ANSYS, Canonsburg, PA.
22.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. AIAA-89-0366.
23.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
24.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer
, Begell House, Antalya, Turkey, Oct. 12–17, pp.
625
632
.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
25.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “Turbulence Modeling Validation, Testing, and Development,” National Aeronautics and Space Administration, Moffett Field, CA, Report No.
NASA-TM-110446
.https://ntrs.nasa.gov/citations/19970017828
26.
Rodriguez
,
S.
,
2019
,
Applied Computational Fluid Dynamics and Turbulence Modeling: Practical Tools, Tips and Techniques
,
Springer International Publishing
, Berlin.
27.
White
,
F. M.
,
2011
,
Fluid Mechanics
, 7th ed.,
McGraw-Hill
,
New York
.
28.
Cengel
,
Y.
, and
Cimbala
,
J.
,
2017
,
Fluid Mechanics: Fundamentals and Applications
, 4th ed.,
McGraw-Hill Education
,
New York
.
29.
Coleman
,
H. W.
, and
Steele
,
G. W.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
, 2nd ed.,
Wiley
,
New York
.
You do not currently have access to this content.