Abstract

In this work, three-dimensional Euler–Lagrange (EL) point-particle simulations of a shock wave interacting with a fixed bed of particles are carried out. The results from the particle-resolved (PR) simulations are used to assess the performance of the point-particle drag models during short time scales. We demonstrate that in a one-way coupled regime, the point-particle simulations recover the dominant gas dynamic features of the flow and are in a good agreement with the exact Riemann solution of a shock traveling through a sudden area contraction. Although the PR simulations are inviscid, we show that a dissipative drag is necessary to predict the mean behavior of the gas. As a model for the inviscid shock-induced (SI) drag two different models are presented in lieu of the quasi-steady drag. Finally, two-way coupled simulations are performed at four different particle volume fractions {0.10, 0.15, 0.20, 0.25} and three different incident shock Mach numbers {1.22, 1.66, 3.0} and compared against the data from PR inviscid simulations. At a lower Mach number (1.22), averaged flow quantities from the two-way coupled simulations agree well with the PR simulations. As the Mach number increases, we observe that the discrepancies between the point-particle and the PR simulations grow. A sensitivity analysis of the drag models involved reveals a strong influence of the inviscid-unsteady force on the gas quantities especially in the case of a strong shock interacting with a dense bed of particles. The use of Mach correlation beyond the subcritical regime coupled with the model for volume fraction correction is identified as a probable cause for the additional drag.

References

References
1.
Kedrinskiy
,
V.
,
2009
, “
Hydrodynamic Aspects of Explosive Eruptions of Volcanoes: Simulation Problems
,”
Shock Waves
,
18
(
6
), pp.
451
464
.10.1007/s00193-008-0181-7
2.
Miles
,
A. R.
,
2009
, “
The Blast-Wave-Driven Instability as a Vehicle for Understanding Supernova Explosion Structure
,”
Astrophys. J.
,
696
(
1
), pp.
498
514
.10.1088/0004-637X/696/1/498
3.
Mac Low
,
M.-M.
, and
Klessen
,
R. S.
,
2004
, “
Control of Star Formation by Supersonic Turbulence
,”
Rev. Mod. Phys.
,
76
(
1
), pp.
125
194
.10.1103/RevModPhys.76.125
4.
Frost
,
D. L.
,
2018
, “
Heterogeneous/Particle-Laden Blast Waves
,”
Shock Waves
, 28(
3
), pp.
439
449
.10.1007/s00193-018-0825-1
5.
Aglitskiy
,
Y.
,
Velikovich
,
A. L.
,
Karasik
,
M.
,
Metzler
,
N.
,
Zalesak
,
S. T.
,
Schmitt
,
A. J.
,
Phillips
,
L.
,
Gardner
,
J. H.
,
Serlin
,
V.
,
Weaver
,
J. L.
, and
Obenschain
,
S. P.
,
2010
, “
Basic Hydrodynamics of Richtmyer–Meshkov-Type Growth and Oscillations in the Inertial Confinement Fusion-Relevant Conditions
,”
Philos. Trans. R. Soc. London A
,
368
(
1916
), pp.
1739
1768
.10.1098/rsta.2009.0131
6.
Ben-Dor
,
G.
,
Britan
,
A.
,
Elperin
,
T.
,
Igra
,
O.
, and
Jiang
,
J.
,
1997
, “
Experimental Investigation of the Interaction Between Weak Shock Waves and Granular Layers
,”
Exp. Fluids
,
22
(
5
), pp.
432
443
.10.1007/s003480050069
7.
Eckhoff
,
R. K.
,
2009
, “
Dust Explosion Prevention and Mitigation, Status and Developments in Basic Knowledge and in Practical Application
,”
Int. J. Chem. Eng.
,
2009
, pp.
1
12
.10.1155/2009/569825
8.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), pp.
883
889
.10.1063/1.864230
9.
Gatignol
,
R.
,
1983
, “
The Faxén Formulas for a Rigid Particle in an Unsteady Non-Uniform Stokes-Flow
,”
J. Méc. Théor. Appl.
,
2
(
2
), pp.
143
160
.
10.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2012
, “
Equation of Motion for a Sphere in Non-Uniform Compressible Flows
,”
J. Fluid Mech.
,
699
, pp.
352
375
.10.1017/jfm.2012.109
11.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Generalized Basset-Boussinesq-Oseen Equation for Unsteady Forces on a Sphere in a Compressible Flow
,”
Phys. Rev. Lett.
,
106
(
8
), p.
084501
.10.1103/PhysRevLett.106.084501
12.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2010
, “
Improved Drag Correlation for Spheres and Application to Shock-Tube Experiments
,”
AIAA J.
,
48
(
6
), pp.
1273
1276
.10.2514/1.J050161
13.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2008
, “
On the Unsteady Inviscid Force on Cylinders and Spheres in Subcritical Compressible Flow
,”
Philos. Trans. R. Soc. A
,
366
(
1873
), pp.
2161
2175
.10.1098/rsta.2008.0027
14.
Tanno
,
H.
,
Itoh
,
K.
,
Saito
,
T.
,
Abe
,
A.
, and
Takayama
,
K.
,
2003
, “
Interaction of a Shock With a Sphere Suspended in a Vertical Shock Tube
,”
Shock Waves
,
13
(
3
), pp.
191
200
.10.1007/s00193-003-0209-y
15.
Sun
,
M.
,
Saito
,
T.
,
Takayama
,
K.
, and
Tanno
,
H.
,
2005
, “
Unsteady Drag on a Sphere by Shock Wave Loading
,”
Shock Waves
,
14
(
1–2
), pp.
3
9
.10.1007/s00193-004-0235-4
16.
Skews
,
B.
,
Bredin
,
M.
, and
Efune
,
M.
,
2007
, “
Drag Measurements in Unsteady Compressible Flow—Part 2: Shock Wave Loading of Spheres and Cones
,”
RD J.
,
23
, pp.
13
19
.
17.
Jourdan
,
G.
,
Houas
,
L.
,
Igra
,
O.
,
Estivalezes
,
J.-L.
,
Devals
,
C.
, and
Meshkov
,
E.
,
2007
, “
Drag Coefficient of a Sphere in a Non-Stationary Flow: New Results
,”
Proc. R. Soc. London A
,
463
(
2088
), pp.
3323
3345
. 10.1098/rspa.2007.0058
18.
Ling
,
Y.
,
Wagner
,
J.
,
Beresh
,
S.
,
Kearney
,
S.
, and
Balachandar
,
S.
,
2012
, “
Interaction of a Planar Shock Wave With a Dense Particle Curtain: Modeling and Experiments
,”
Phys. Fluids
,
24
(
11
), p.
113301
.10.1063/1.4768815
19.
Annamalai
,
S.
,
Rollin
,
B.
,
Ouellet
,
F.
,
Neal
,
C.
,
Jackson
,
T. L.
, and
Balachandar
,
S.
,
2016
, “
Effects of Initial Perturbations in the Early Moments of an Explosive Dispersal of Particles
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
070903
.10.1115/1.4030954
20.
Regele
,
J.
,
Rabinovitch
,
J.
,
Colonius
,
T.
, and
Blanquart
,
G.
,
2014
, “
Unsteady Effects in Dense, High Speed, Particle Laden Flows
,”
Int. J. Multiphase Flow
,
61
, pp.
1
13
.10.1016/j.ijmultiphaseflow.2013.12.007
21.
Hosseinzadeh-Nik
,
Z.
,
Subramaniam
,
S.
, and
Regele
,
J. D.
,
2018
, “
Investigation and Quantification of Flow Unsteadiness in Shock-Particle Cloud Interaction
,”
Int. J. Multiphase Flow
,
101
, pp.
186
201
.10.1016/j.ijmultiphaseflow.2018.01.011
22.
Mehta
,
Y.
,
Neal
,
C.
,
Salari
,
K.
,
Jackson
,
T.
,
Balachandar
,
S.
, and
Thakur
,
S.
,
2018
, “
Propagation of a Strong Shock Over a Random Bed of Spherical Particles
,”
J. Fluid Mech.
,
839
, pp.
157
197
.10.1017/jfm.2017.909
23.
Akiki
,
G.
,
Jackson
,
T.
, and
Balachandar
,
S.
,
2017
, “
Pairwise Interaction Extended Point-Particle Model for a Random Array of Monodisperse Spheres
,”
J. Fluid Mech.
,
813
, pp.
882
928
.10.1017/jfm.2016.877
24.
Mehta
,
Y.
,
Salari
,
K.
,
Jackson
,
T.
, and
Balachandar
,
S.
,
2019
, “
Effect of Mach Number and Volume Fraction in Air-Shock Interacting With a Bed of Randomly Distributed Spherical Particles
,”
Phys. Rev. Fluids
,
4
(
1
), p.
014303
.10.1103/PhysRevFluids.4.014303
25.
Sangani
,
A. S.
,
Zhang
,
D.
, and
Prosperetti
,
A.
,
1991
, “
The Added Mass, Basset, and Viscous Drag Coefficients in Nondilute Bubbly Liquids Undergoing Small-Amplitude Oscillatory Motion
,”
Phys. Fluids A
,
3
(
12
), pp.
2955
2970
.10.1063/1.857838
26.
Akiki
,
G.
,
Moore
,
W.
, and
Balachandar
,
S.
,
2017
, “
Pairwise-Interaction Extended Point-Particle Model for Particle-Laden Flows
,”
J. Comput. Phys.
,
351
, pp.
329
357
.10.1016/j.jcp.2017.07.056
27.
Pialat
,
X.
,
Simonin
,
O.
, and
Villedieu
,
P.
,
2007
, “
A Hybrid Eulerian-Lagrangian Method to Simulate the Dispersed Phase in Turbulent Gas-Particle Flows
,”
Int. J. Multiphase Flow
,
33
(
7
), pp.
766
788
.10.1016/j.ijmultiphaseflow.2007.02.003
28.
Moore
,
W.
,
Balachandar
,
S.
, and
Akiki
,
G.
,
2019
, “
A Hybrid Point-Particle Force Model That Combines Physical and Data-Driven Approaches
,”
J. Comput. Phys.
,
385
, pp.
187
208
.10.1016/j.jcp.2019.01.053
29.
Parmar
,
M. K.
,
2010
, “
Unsteady Forces on a Particle in Compressible Flows
,” Ph.D. thesis,
University of Florida
, Gainesville, FL.
30.
Barth
,
T.
,
1991
, “
A 3-D Upwind Euler Solver for Unstructured Meshes
,”
Tenth Computational Fluid Dynamics Conference
, Honolulu, HI, June 24–26, p.
1548
.10.2514/6.1991-1548
31.
Haselbacher
,
A.
,
2005
, “
A Weno Reconstruction Algorithm for Unstructured Grids Based on Explicit Stencil Construction
,”
AIAA Paper No. 2005-879.
32.
Liou
,
M.-S.
,
Chang
,
C.-H.
,
Nguyen
,
L.
, and
Theofanous
,
T. G.
,
2008
, “
How to Solve Compressible Multifluid Equations: A Simple, Robust, and Accurate Method
,”
AIAA J.
,
46
(
9
), pp.
2345
2356
.10.2514/1.34793
33.
Crowe
,
C.
,
Babcock
,
W.
, and
Willoughby
,
P.
,
1972
, “
Drag Coefficient for Particles in Rarefied, Low Mach-Number Flows
,”
Proceedings of the International Symposium on Two-Phase Systems
, Technion City, Israel, pp.
419
431
.10.1016/B978-0-08-017035-0.50027-6
34.
Ling
,
Y.
,
Haselbacher
,
A.
,
Balachandar
,
S.
,
Najjar
,
F.
, and
Stewart
,
D. S.
,
2013
, “
Shock Interaction With a Deformable Particle: Direct Numerical Simulation and Point-Particle Modeling
,”
J. Appl. Phys.
,
113
(
1
), p.
013504
.10.1063/1.4772744
35.
Loth
,
E.
,
2008
, “
Compressibility and Rarefaction Effects on Drag of a Spherical Particle
,”
AIAA J.
,
46
(
9
), pp.
2219
2228
.10.2514/1.28943
36.
Han
,
E.
,
Hantke
,
M.
, and
Warnecke
,
G.
,
2012
, “
Exact Riemann Solutions to Compressible Euler Equations in Ducts With Discontinuous Cross-Section
,”
J. Hyperbolic Differ. Equations
,
9
(
3
), pp.
403
449
.10.1142/S0219891612500130
37.
Zwick
,
D.
, and
Balachandar
,
S.
,
2020
, “
A Scalable Euler–Lagrange Approach for Multiphase Flow Simulation on Spectral Elements
,”
Int. J. High Performance Comput. Appl.
,
34
(
3
), pp.
316
339
.10.1177/1094342019867756
You do not currently have access to this content.