Abstract

This paper presents a comparative study of volume average predictions between low-Reynolds-number (LRN) turbulence models: Abe–Kondoh–Nagano (AKN), Lam–Bremhorst, Yang–Shih, standard k–ϵ, and k–ω. A porous medium, which represents conditions in which the flow path changes rapidly, was defined as an infinite array of square cylinders. In addition, to explore the effect of particle size on the rapid expansion and contraction of the flow paths, the diameter ratio (DR) of the square cylinders was systematically varied from 0.2 to 0.8. This generalization revealed new insights into the flow. The Reynolds number (ReD) covered a turbulent range of 500 to 500 × 103, and the porosity ϕ was varied from 0.27 to 0.8. The correlations of the turbulent kinetic energy (k), its dissipation rate (ε), and macroscopic pressure gradient as a function of ϕ, which are useful in macroscopic turbulence modeling, are presented. The results show that the AKN model yields better predictions of the volume-averaged flow parameters because it is better suited to reproduce recirculation zones. For all the DRs, at high ϕ, the distances between walls are high, and the interstitial velocities are low. Consequently, wake flows are produced, and energy losses by friction are moderate. As the flow becomes increasingly bound, the wakes are suppressed and disrupted, and k and ε increase owing to shear layer interactions and frictional forces. Distinctive low-velocity recirculation patterns appear inside pores depending on DR.

References

1.
Dybss
,
A.
, and
Edwards
,
R.
,
1984
, “
A New Look at Porous Media Fluid mechanics -Darcy to Turbulent
,”
Fundamentals of Transport Phenomena in Porous Media, Proceedings of the NATO Advanced Study Institute on Mechanics of Fluids in Porous Media
, 1 ed.,
J.
Bear
and
Y.
Corapcioglu
, eds.,
Martinus Nijhoff Publishers
, Newark,
DE
, pp.
199
256
.
2.
Weitzman
,
J. S.
,
Samuel
,
L. C.
,
Craig
,
A. E.
,
Zeller
,
R. B.
,
Monismith
,
S. G.
, and
Koseff
,
J. R.
,
2014
, “
On the Use of Refractive - Index – Matched Hydrogel for Fluid Velocity Measurement Within and Around Geometrically Complex Solid Obstructions
,”
Exp. Fluids
,
55
(
12
), pp.
1
12
.10.1007/s00348-014-1862-x
3.
Wood
,
B. D.
,
He
,
X.
, and
Apte
,
S. V.
,
2020
, “
Modeling Turbulent Flows in Porous Media
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
171
203
.10.1146/annurev-fluid-010719-060317
4.
Jiang
,
X.
, and
Lai
,
H.
,
2009
,
Numerical Techniques for Direct and Large-Eddy Simulations
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
5.
Jin
,
Y.
,
Uth
,
M. F.
,
Kuznetsov
,
A. V.
, and
Herwig
,
H.
,
2015
, “
Numerical Investigation of the Possibility of Macroscopic Turbulence in Porous Media: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
766
, pp.
76
103
.10.1017/jfm.2015.9
6.
Chu
,
X.
,
Weigand
,
B.
, and
Vaikuntanathan
,
V.
,
2018
, “
Flow Turbulence Topology in Regular Porous Media: From Macroscopic to Microscopic Scale With Direct Numerical Simulation
,”
Phys. Fluids
,
30
(
6
), p.
065102
.10.1063/1.5030651
7.
Rasam
,
A.
,
Brethouwer
,
G.
,
Schlatter
,
P.
,
Li
,
Q.
, and
Johansson
,
A. V.
,
2011
, “
Effects of Modelling, Resolution and Anisotropy of Subgrid-Scales on Large Eddy Simulations of Channel Flow
,”
J. Turbul.
,
12
, pp.
N10
–N
19
.10.1080/14685248.2010.541920
8.
Kuwata
,
Y.
, and
Suga
,
K.
,
2015
, “
Large Eddy Simulations of Pore-Scale Turbulent Flows in Porous Media by the Lattice Boltzmann Method
,”
Int. J. Heat Fluid Flow
,
55
, pp.
143
157
.10.1016/j.ijheatfluidflow.2015.05.015
9.
Suga
,
K.
,
Chikasue
,
R.
, and
Kuwata
,
Y.
,
2017
, “
Modelling Turbulent and Dispersion Heat Fluxes in Turbulent Porous Medium Flows Using the Resolved LES Data
,”
Int. J. Heat Fluid Flow
,
68
, pp.
225
236
.10.1016/j.ijheatfluidflow.2017.08.005
10.
Hrenya
,
C.
,
Bolio
,
E.
,
Chakrabarti
,
D.
, and
Sinclair
,
J.
,
1995
, “
Comparison of Low Reynolds Number k-ϵ Turbulence Models in Predicting Fully Developed Pipe Flow
,”
Int. J. Heat Mass Transfer
,
50
(
12
), pp.
1923
1941
.10.1016/0009-2509(95)00035-4
11.
Kuwahara
,
F.
,
Yamane
,
T.
, and
Nakayama
,
A.
,
2006
, “
Large Eddy Simulation of Turbulent Flow in Porous Media
,”
Int. Commun. Heat Mass Transfer
,
33
(
4
), pp.
411
418
.10.1016/j.icheatmasstransfer.2005.12.011
12.
Kundu
,
P.
,
Kumar
,
V.
,
Hoarau
,
Y.
, and
Mishra
,
I. M.
,
2016
, “
Numerical Simulation and Analysis of Fluid Flow Hydrodynamics Through a Structured Array of Circular Cylinders Forming Porous Medium
,”
Appl. Math. Modell.
,
40
(
23–24
), pp.
9848
9871
.10.1016/j.apm.2016.06.043
13.
Tu
,
J.
,
Yeoh
,
G.-H.
, and
Liu
,
C.
,
2009
,
Computational Fluid Dynamics, a Practical Approach
, 2nd ed.,
Butterworth-Heinemann
,
Woburn, MA
.
14.
Wilcox
,
D. C.
,
1993
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries
,
La Canada, CA
.
15.
Antohe
,
B.
, and
Lage
,
J.
,
1997
, “
A General Two-Equation Macroscopic Turbulence Model for Incompressible Flow in Porous Media
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3013
3024
.10.1016/S0017-9310(96)00370-5
16.
Yang
,
J.
,
Zhou
,
M.
,
Li
,
S. Y.
,
Bu
,
S. S.
, and
Wang
,
Q. W.
,
2014
, “
Three-Dimensional Numerical Analysis of Turbulent Flow in Porous Media Formed by Periodic Arrays of Cubic, Spherical, or Ellipsoidal Particles
,”
ASME J. Fluids Eng.
,
136
(
1
), pp.
15
24
.10.1115/1.4025365
17.
Masuoka
,
T.
, and
Takatsu
,
Y.
,
1996
, “
Turbulence Model for Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
39
(
13
), pp.
2803
2809
.10.1016/0017-9310(95)00353-3
18.
Nakayama
,
A.
, and
Kuwahara
,
F.
,
1999
, “
A Macroscopic Turbulence Model for Flow in a Porous Medium
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
427
433
.10.1115/1.2822227
19.
Nakayama
,
A.
, and
Kuwahara
,
F.
,
2008
, “
A General Macroscopic Turbulence Model for Flows in Packed Beds, Channels, Pipes, and Rod Bundles
,”
ASME J. Fluids Eng.
,
130
(
10
), p.
101205
.10.1115/1.2969461
20.
Pedras
,
M.
, and
de Lemos
,
M. J.
,
2001
, “
Macroscopic Turbulence Modeling for Incompressible Flow Through Undeformable Porous Media
,”
Int. J. Heat Mass Transfer
,
44
(
6
), pp.
1081
1093
.10.1016/S0017-9310(00)00202-7
21.
Kundu
,
P.
,
Kumar
,
V.
, and
Mishra
,
I. M.
,
2014
, “
Numerical Modeling of Turbulent Flow Through Isotropic Porous Media
,”
Int. J. Heat Mass Transfer
,
75
, pp.
40
57
.10.1016/j.ijheatmasstransfer.2014.03.020
22.
Hassid
,
S.
, and
Poreh
,
M.
,
1975
, “
A Turbulent Energy Model for Flows With Drag Reduction
,”
ASME J. Fluids Eng.
,
97
(
2
), pp.
234
241
.10.1115/1.3447256
23.
Lam
,
C. K. G.
, and
Bremhorst
,
K.
,
1981
, “
A Modified Form of the k-Epsilon Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
103
(
3
), pp.
456
460
.10.1115/1.3240815
24.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
,
1994
, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching flows-I. Flow Field Calculations
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
139
151
.10.1016/0017-9310(94)90168-6
25.
Yang
,
Z.
, and
Shih
,
Y.
,
1993
, “
New Time Scale Based k-Epsilon Model for Near-Wall Turbulence
,”
AIAA J.
,
31
(
7
), pp.
1191
1198
.10.2514/3.11752
26.
Kuwahara
,
F.
,
Kameyama
,
Y.
,
Yamashita
,
S.
, and
Nakayama
,
A.
,
1998
, “
Numerical Modeling of Turbulent Flow in Porous Media Using a Spatially Periodic Array
,”
J. Porous Media
,
1
(
1
), pp.
47
55
.10.1615/JPorMedia.v1.i1.40
27.
Abudu
,
P.
,
Wang
,
L.
,
Xu
,
M.
,
Jia
,
D.
,
Wang
,
X.
, and
Jia
,
L.
,
2018
, “
Hierarchical Porous Carbon Materials Derived From Petroleum Pitch for High-Performance Supercapacitors
,”
Chem. Phys. Lett.
,
702
, pp.
1
7
.10.1016/j.cplett.2018.04.055
28.
Roucher
,
A.
,
Schmitt
,
V.
,
Blin
,
J. L.
, and
Backov
,
R.
,
2019
, “
Sol–Gel Process and Complex Fluids: Sculpting Porous Matter at Various Lengths Scales Towards the Si(HIPE), Si(PHIPE), and SBA-15-Si(HIPE) Series
,”
J. Sol–Gel Sci. Technol.
,
90
(
1
), pp.
95
104
.10.1007/s10971-018-4794-8
29.
Joshi
,
R.
,
Schneider
,
J. J.
,
Yilmazoglu
,
O.
, and
Pavlidis
,
D.
,
2010
, “
Patterned Growth of Ultra Long Carbon Nanotubes. Properties and Systematic Investigation Into Their Growth Process
,”
J. Mater. Chem.
,
20
(
9
), pp.
1717
1721
.10.1039/b919579c
30.
Zuluaga
,
L. F.
,
Fossen
,
H.
,
Ballas
,
G.
, and
Rotevatn
,
A.
,
2018
, “
Structural and Petrophysical Effects of Overthrusting on Highly Porous Sandstones: The Aztec Sandstone in the Buffington Window, SE Nevada, USA
,”
Geol. Soc., London, Spec. Publ.
,
459
(
1
), pp.
59
77
.10.1144/SP459.8
31.
Abe
,
K.
,
Nagano
,
Y.
, and
Kondoh
,
T.
,
1993
, “
Numerical Prediction of Separating and Reattaching Flows With a Modified low-Reynolds-Number k-ϵ Model
,”
J. Wind Eng. Ind. Aerodyn.
,
46–47
, pp.
85
94
.10.1016/0167-6105(93)90117-7
32.
Guo
,
B.
,
Yu
,
A.
,
Wright
,
B.
, and
Zulli
,
P.
,
2006
, “
Simulation of Turbulent Flow in a Packed Bed
,”
Chem. Eng. Technol.
,
29
(
5
), pp.
596
603
.10.1002/ceat.200500292
33.
ANSYS
,
2016
,
Meshing 17.0.
,
ANSYS
, Canonsburg, PA.
34.
Celik
,
I.
, and
Karatekin
,
O.
,
1997
, “
Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
584
590
.10.1115/1.2819284
35.
Coroneo
,
M.
,
Montante
,
G.
,
Paglianti
,
A.
, and
Magelli
,
F.
,
2011
, “
CFD Prediction of Fluid Flow and Mixing in Stirred Tanks: Numerical Issues About the RANS Simulations
,”
Comput. Chem. Eng.
,
35
(
10
), pp.
1959
1968
.10.1016/j.compchemeng.2010.12.007
36.
Teruel
,
F. E.
, and
Rizwan-Uddin
,
2010
, “
Numerical Computation of Macroscopic Turbulence Quantities in Representative Elementary Volumes of the Porous Medium
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5190
5198
.10.1016/j.ijheatmasstransfer.2010.07.041
37.
de Lemos
,
M. J. S.
,
2012
,
Turbulence in Porous Media: Modeling and Applications
, 2nd ed.,
Elsevier
,
London
.
38.
Larsson
,
I. A.
,
Lundström
,
T. S.
, and
Lycksam
,
H.
,
2018
, “
Tomographic PIV of Flow Through Ordered Thin Porous Media
,”
Exp. Fluids
,
59
(
6
), pp.
1
7
.10.1007/s00348-018-2548-6
39.
Agnaou
,
M.
,
Lasseux
,
D.
, and
Ahmadi
,
A.
,
2016
, “
From Steady to Unsteady Laminar Flow in Model Porous Structures: An Investigation of the First Hopf Bifurcation
,”
Comput. Fluids
,
136
, pp.
67
82
.10.1016/j.compfluid.2016.05.030
40.
Delafosse
,
A.
,
Morchain
,
J.
,
Guiraud
,
P.
, and
Liné
,
A.
,
2009
, “
Trailing Vortices Generated by a Rushton Turbine: Assessment of URANS and Large Eddy Simulations
,”
Chem. Eng. Res. Des.
,
87
(
4
), pp.
401
411
.10.1016/j.cherd.2008.12.018
41.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Sano
,
Y.
,
2007
, “
Concept of Equivalent Diameter for Heat and Fluid Flow in Porous Media
,”
AIChE J.
,
53
(
3
), pp.
732
736
.10.1002/aic.11092
42.
Lam
,
K.
, and
Zou
,
L.
,
2010
, “
Three-Dimensional Numerical Simulations of Cross-Flow Around Four Cylinders in an in-Line Square Configuration
,”
J. Fluids Struct.
,
26
(
3
), pp.
482
502
.10.1016/j.jfluidstructs.2010.01.001
43.
Chaudhary
,
K.
,
Cardenas
,
M. B.
,
Deng
,
W.
, and
Bennett
,
P. C.
,
2011
, “
The Role of Eddies Inside Pores in the Transition From Darcy to Forchheimer Flows
,”
Geophys. Res. Lett.
,
38
(
24
), p.
6
.10.1029/2011GL050214
You do not currently have access to this content.